Search results for: meta heuristic
109 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function
Authors: Bita Tadayon, Nasser Salmasi
Abstract:
This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833108 Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm
Authors: Aldy Gunawan, Kien Ming Ng, Kim Leng Poh
Abstract:
This paper presents a hybrid algorithm for solving a timetabling problem, which is commonly encountered in many universities. The problem combines both teacher assignment and course scheduling problems simultaneously, and is presented as a mathematical programming model. However, this problem becomes intractable and it is unlikely that a proven optimal solution can be obtained by an integer programming approach, especially for large problem instances. A hybrid algorithm that combines an integer programming approach, a greedy heuristic and a modified simulated annealing algorithm collaboratively is proposed to solve the problem. Several randomly generated data sets of sizes comparable to that of an institution in Indonesia are solved using the proposed algorithm. Computational results indicate that the algorithm can overcome difficulties of large problem sizes encountered in previous related works.
Keywords: Timetabling problem, mathematical programming model, hybrid algorithm, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4573107 Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial
Authors: Srilaxmi Gangula, MahaLakshmi Vinukonda, Neeraj Rao
Abstract:
A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications.
Keywords: Absorber, C-band, meta material, multilayer, X-band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617106 Hybrid Artificial Immune System for Job Shop Scheduling Problem
Authors: Bin Cai, Shilong Wang, Haibo Hu
Abstract:
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925105 A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem
Authors: Mohammad Mirabi
Abstract:
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.Keywords: Hybrid genetic algorithm, Scheduling, Permutationflow-shop, Sequence dependent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881104 Epistemological Functions of Emotions and Their Relevance to the Formation of Citizens and Scientists
Authors: Dení Stincer Gómez, Zuraya Monroy Nasr
Abstract:
Pedagogy of science historically has given priority to teaching strategies that mobilize the cognitive mechanisms leaving out emotional mechanisms. Modern epistemology, cognitive psychology and psychoanalysis begin to argue and prove that emotions are relevant epistemological functions. They are 1) the selection function: that allows the perception and reason choose, to multiple alternative explanation of a particular fact, those are relevant and discard those that are not, 2) heuristic function: that is related to the activation cognitive processes that are effective in the process of knowing; and 3) the so-called content-bearing function: it argues that emotions provide the material reasoning that is subsequently transformed into linguistic propositions. According to these hypotheses, scientific knowledge seems to come from emotions that meet these functions. This paper argues that science education must start from the presence of certain emotions in the learner if we want to form citizens with a scientific or cultural future.
Keywords: Epistemic emotions, science education, formation of citizens and scientists, epistemic functions of emotions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477103 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method
Authors: S. Phanyaem
Abstract:
This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.Keywords: Effect size, confidence interval, Bootstrap Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147102 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem
Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang
Abstract:
Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607101 A New Method for Multiobjective Optimization Based on Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
The necessity of solving multi dimensional complicated scientific problems beside the necessity of several objective functions optimization are the most motive reason of born of artificial intelligence and heuristic methods. In this paper, we introduce a new method for multiobjective optimization based on learning automata. In the proposed method, search space divides into separate hyper-cubes and each cube is considered as an action. After gathering of all objective functions with separate weights, the cumulative function is considered as the fitness function. By the application of all the cubes to the cumulative function, we calculate the amount of amplification of each action and the algorithm continues its way to find the best solutions. In this Method, a lateral memory is used to gather the significant points of each iteration of the algorithm. Finally, by considering the domination factor, pareto front is estimated. Results of several experiments show the effectiveness of this method in comparison with genetic algorithm based method.Keywords: Function optimization, Multiobjective optimization, Learning automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678100 Air Cargo Overbooking Model under Stochastic Weight and Volume Cancellation
Authors: N. Phumchusri, K. Roekdethawesab, M. Lohatepanont
Abstract:
Overbooking is an approach of selling more goods or services than available capacities because sellers anticipate that some buyers will not show-up or may cancel their bookings. At present, many airlines deploy overbooking strategy in order to deal with the uncertainty of their customers. Particularly, some airlines sell more cargo capacity than what they have available to freight forwarders with beliefs that some of them will cancel later. In this paper, we propose methods to find the optimal overbooking level of volume and weight for air cargo in order to minimize the total cost, containing cost of spoilage and cost of offloaded. Cancellations of volume and weight are jointly random variables with a known joint distribution. Heuristic approaches applying the idea of weight and volume independency is considered to find an appropriate answer to the full problem. Computational experiments are used to explore the performance of approaches presented in this paper, as compared to a naïve method under different scenarios.
Keywords: Air cargo overbooking, offloaded capacity, optimal overbooking level, revenue management, spoilage capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218799 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: Bayesian, cloud computing, real-time private cloud, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140998 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225697 IIR Filter design with Craziness based Particle Swarm Optimization Technique
Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal
Abstract:
This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.
Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257696 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.
Keywords: Breadth-first search, BFS, graph ordering, graph algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63395 An Exploration of Brand Storytelling in a Video Sharing Social Network
Authors: Charmaine du Plessis
Abstract:
The brand storytelling themes and emotional appeals of three major global brands were analysed by means of visual rhetoric in a digital environment focusing on the ethos communication technique. A well-known framework of five basic brand personality dimensions was used to delineate the analysis. Brand storytelling as a branding technique is becoming increasingly popular, especially since all brands can tell a story to connect and engage with consumers on an emotional level. Social media have changed the way in which brand stories are shared with online consumers, while social video networking sites in particular create an opportunity to share brand stories with a much greater target audience through electronic word of mouth (eWOM). The findings not only confirm three dimensions in the traditional brand personality framework, but can also serve as a heuristic tool for other researchers analyzing brand storytelling in a social video sharing network environment.
Keywords: Communication technique, visual rhetoric, social video sharing network, brand storytelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220494 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: Latency, Fast path assignment, Bottleneck link.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59393 Dynamic Economic Dispatch Using Glowworm Swarm Optimization Technique
Authors: K. C. Meher, R. K. Swain, C. K. Chanda
Abstract:
This paper gives an intuition regarding glowworm swarm optimization (GSO) technique to solve dynamic economic dispatch (DED) problems of thermal generating units. The objective of the problem is to schedule optimal power generation of dedicated thermal units over a specific time band. In this study, Glowworm swarm optimization technique enables a swarm of agents to split into subgroup, exhibit simultaneous taxis towards each other and rendezvous at multiple optima (not necessarily equal) of a given multimodal function. The feasibility of the GSO method has been tested on ten-unit-test systems where the power balance constraints, operating limits, valve point effects, and ramp rate limits are taken into account. The results obtained by the proposed technique are compared with other heuristic techniques. The results show that GSO technique is capable of producing better results.
Keywords: Dynamic economic dispatch, Glowworm swarm optimization, Luciferin, Valve–point loading effect, Ramp rate limits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131492 Improved MARS Ciphering Using a Metamorphic-Enhanced Function
Authors: Moataz M. Naguib, Hatem Khater, A. Baith Mohamed
Abstract:
MARS is a shared-key (symmetric) block cipher algorithm supporting 128-bit block size and a variable key size of between 128 and 448 bits. MARS has a several rounds of cryptographic core that is designed to take advantage of the powerful results for improving security/performance tradeoff over existing ciphers. In this work, a new function added to improve the ciphering process it is called, Meta-Morphic function. This function use XOR, Rotating, Inverting and No-Operation logical operations before and after encryption process. The aim of these operations is to improve MARS cipher process and makes a high confusion criterion for the Ciphertext.
Keywords: AES, MARS, Metamorphic, Cryptography, Block Cipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204391 Genetic Algorithm Based Wavelength Division Multiplexing Networks Planning
Authors: S.Baskar, P.S.Ramkumar, R.Kesavan
Abstract:
This paper presents a new heuristic algorithm useful for long-term planning of survivable WDM networks. A multi-period model is formulated that combines network topology design and capacity expansion. The ability to determine network expansion schedules of this type becomes increasingly important to the telecommunications industry and to its customers. The solution technique consists of a Genetic Algorithm that allows generating several network alternatives for each time period simultaneously and shortest-path techniques to deduce from these alternatives a least-cost network expansion plan over all time periods. The multi-period planning approach is illustrated on a realistic network example. Extensive simulations on a wide range of problem instances are carried out to assess the cost savings that can be expected by choosing a multi-period planning approach instead of an iterative network expansion design method.Keywords: Wavelength Division Multiplexing, Genetic Algorithm, Network topology, Multi-period reliable network planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143690 A New Quantile Based Fuzzy Time Series Forecasting Model
Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil
Abstract:
Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.
Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199689 Low Latency Routing Algorithm for Unmanned Aerial Vehicles Ad-Hoc Networks
Authors: Abdel Ilah Alshabtat, Liang Dong
Abstract:
In this paper, we proposed a new routing protocol for Unmanned Aerial Vehicles (UAVs) that equipped with directional antenna. We named this protocol Directional Optimized Link State Routing Protocol (DOLSR). This protocol is based on the well known protocol that is called Optimized Link State Routing Protocol (OLSR). We focused in our protocol on the multipoint relay (MPR) concept which is the most important feature of this protocol. We developed a heuristic that allows DOLSR protocol to minimize the number of the multipoint relays. With this new protocol the number of overhead packets will be reduced and the End-to-End delay of the network will also be minimized. We showed through simulation that our protocol outperformed Optimized Link State Routing Protocol, Dynamic Source Routing (DSR) protocol and Ad- Hoc On demand Distance Vector (AODV) routing protocol in reducing the End-to-End delay and enhancing the overall throughput. Our evaluation of the previous protocols was based on the OPNET network simulation tool.Keywords: Mobile Ad-Hoc Networks, Ad-Hoc RoutingProtocols, Optimized link State Routing Protocol, Unmanned AerialVehicles, Directional Antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250488 Representation of Coloured Petri Net in Abductive Logic Programming (CPN-LP) and Its Application in Modeling an Intelligent Agent
Authors: T. H. Fung
Abstract:
Coloured Petri net (CPN) has been widely adopted in various areas in Computer Science, including protocol specification, performance evaluation, distributed systems and coordination in multi-agent systems. It provides a graphical representation of a system and has a strong mathematical foundation for proving various properties. This paper proposes a novel representation of a coloured Petri net using an extension of logic programming called abductive logic programming (ALP), which is purely based on classical logic. Under such a representation, an implementation of a CPN could be directly obtained, in which every inference step could be treated as a kind of equivalence preserved transformation. We would describe how to implement a CPN under such a representation using common meta-programming techniques in Prolog. We call our framework CPN-LP and illustrate its applications in modeling an intelligent agent.
Keywords: Abduction, coloured petri net, intelligent agent, logic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150487 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs
Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh
Abstract:
The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.Keywords: Block layout problem, building-block layout design, CAD, optimization, search techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123986 Modeling Corporate Memories using the ReCaRo Model, Some Experiments
Authors: Lotfi Admane
Abstract:
This paper presents a model of case based corporate memory named ReCaRo (REsource, CAse, ROle). The approach suggested in ReCaRo decomposes the domain to model through a set of components. These components represent the objects developed by the company during its activity. They are reused, and sometimes, while bringing adaptations. These components are enriched by knowledge after each reuse. ReCaRo builds the corporate memory on the basis of these components. It models two types of knowledge: 1) Business Knowledge, which constitutes the main knowledge capital of the company, refers to its basic skill, thus, directly to the components and 2) the Experience Knowledge which is a specialised knowledge and represents the experience gained during the handling of business knowledge. ReCaRo builds corporate memories which are made up of five communicating ones.Keywords: Corporate memories, meta-model, reuse, ReCaRo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122385 Instance-Based Ontology Matching Using Different Kinds of Formalism
Authors: Katrin Zaiß, Tim Schlüter, Stefan Conrad
Abstract:
Ontology Matching is a task needed in various applica-tions, for example for comparison or merging purposes. In literature,many algorithms solving the matching problem can be found, butmost of them do not consider instances at all. Mappings are deter-mined by calculating the string-similarity of labels, by recognizinglinguistic word relations (synonyms, subsumptions etc.) or by ana-lyzing the (graph) structure. Due to the facts that instances are oftenmodeled within the ontology and that the set of instances describesthe meaning of the concepts better than their meta information,instances should definitely be incorporated into the matching process.In this paper several novel instance-based matching algorithms arepresented which enhance the quality of matching results obtainedwith common concept-based methods. Different kinds of formalismsare use to classify concepts on account of their instances and finallyto compare the concepts directly.KeywordsInstances, Ontology Matching, Semantic Web
Keywords: Instances, Ontology Matching, Semantic Web
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152684 Communicating a Mega Sporting Event in a Social Network Environment
Authors: Charmaine du Plessis
Abstract:
Arguments on a popular microblogging site were analysed by means of a methodological approach to business rhetoric focusing on the logos communication technique. The focus of the analysis was the 100 day countdown to the 2011 Rugby World Cup as advanced by the organisers. Big sporting events provide an attractive medium for sport event marketers in that they have become important strategic communication tools directed at sport consumers. Sport event marketing is understood in the sense of using a microblogging site as a communication tool whose purpose it is to disseminate a company-s marketing messages by involving the target audience in experiential activities. Sport creates a universal language in that it excites and increases the spread of information by word of mouth and other means. The findings highlight the limitations of a microblogging site in terms of marketing messages which can assist in better practices. This study can also serve as a heuristic tool for other researchers analysing sports marketing messages in social network environments.
Keywords: communication technique, microblogging, rhetoric, social networking, sport event marketing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210983 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem
Authors: Danping Lin, C.K.M. Lee
Abstract:
Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespanKeywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179282 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem
Authors: Abdolsalam Ghaderi
Abstract:
In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.Keywords: Location-routing problem, robust optimization, Stochastic Programming, variable neighborhood search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75581 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture
Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira
Abstract:
This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.
Keywords: Model driven architecture, model-view-controller, bnf syntax, model, transformation, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92080 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.
Keywords: Heterogeneous software artifacts, Software evolution control, Unified approach, Meta Model, Software Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798