Search results for: big data actors roles
7499 Automated Stereophotogrammetry Data Cleansing
Authors: Stuart Henry, Philip Morrow, John Winder, Bryan Scotney
Abstract:
The stereophotogrammetry modality is gaining more widespread use in the clinical setting. Registration and visualization of this data, in conjunction with conventional 3D volumetric image modalities, provides virtual human data with textured soft tissue and internal anatomical and structural information. In this investigation computed tomography (CT) and stereophotogrammetry data is acquired from 4 anatomical phantoms and registered using the trimmed iterative closest point (TrICP) algorithm. This paper fully addresses the issue of imaging artifacts around the stereophotogrammetry surface edge using the registered CT data as a reference. Several iterative algorithms are implemented to automatically identify and remove stereophotogrammetry surface edge outliers, improving the overall visualization of the combined stereophotogrammetry and CT data. This paper shows that outliers at the surface edge of stereophotogrammetry data can be successfully removed automatically.
Keywords: Data cleansing, stereophotogrammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18427498 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles
Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin
Abstract:
A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15887497 A Critical Study of Media Profiling on Society-s Social Problems from a British Perspective
Authors: Cj Gletus Matthews Cn Jacobs, Kogilah Narayanasamy
Abstract:
This article explores the sociological perspectives on social problems and the role of the media which has a delicate role to tread in balancing its duty to the public and the victim Whilst social problems have objective conditions, it is the subjective definition of such problems that ensure which social problem comes to the fore and which doesn-t. Further it explores the roles and functions of policymakers when addressing social problems and the impact of the inception of media profiling as well as the advantages and disadvantages of media profiling towards social problems. It focuses on the inception of media profiling due to its length and a follow up article will explore how current media profiling towards social problems have evolved since its inception.Keywords: Media Profiling, Policy Response, Social Problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13217496 Courses Pre-Required Visualization Using Force Directed Placement Technique
Authors: Imen Ammari, Mourad Elloumi, Ala Eddine Barouni
Abstract:
Visualizing “Courses – Pre – Required - Architecture" on the screen has proven to be useful and helpful for university actors and specially for students. In fact, these students can easily identify courses and their pre required, perceive the courses to follow in the future, and then can choose rapidly the appropriate course to register in. Given a set of courses and their prerequired, we present an algorithm for visualization a graph entitled “Courses-Pre-Required-Graph" that present courses and their prerequired in order to help students to recognize, lonely, what courses to take in the future and perceive the contain of all courses that they will study. Our algorithm using “Force Directed Placement" technique visualizes the “Courses-Pre-Required-Graph" in such way that courses are easily identifiable. The time complexity of our drawing algorithm is O (n2), where n is the number of courses in the “Courses-Pre-Required-Graph".Keywords: Courses–Pre-Required-Architecture, Courses-Pre- Required-Graph, Courses-Pre-Required-Visualization, Force directed Placement, Resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13197495 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17367494 The Characteristics of Thai Movies and Factors Contributing to Becoming Widely Known in International Markets
Authors: Tanyatorn Panyasopon
Abstract:
Many Thai movies have been very popular domestically and internationally. Some movies were box office hits and receiving awards. However, there has not yet been research about how Thai movies can sell in international markets The objectives of the research were 1) To analyze the characteristics of Thai movies that can sell to world audiences; 2) To investigate the factors making Thai movies into foreign markets. Thai film professionals were interviewed. Their ideas were analyzed to find out what factors contributing to Thai movies widely seen in worldwide markets. Nine foreign audiences were also interviewed to reveal what characteristics of Thai movies would be well accepted by the markets. The results showed that major characteristics of Thai movies proving successful worldwide were cultural and exotic Thai movies, outstanding genres, well-known actors, music and songs. Factors contributing to global market were marketing, qualities of Thai movies, and financial support from the government.Keywords: Characteristics, factors, international markets, Thai movies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50267493 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.
Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6947492 Identifying Critical Success Factors for Data Quality Management through a Delphi Study
Authors: Maria Paula Santos, Ana Lucas
Abstract:
Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.
Keywords: Critical success factors, data quality, data quality management, Delphi, Q-Sort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11077491 Secure Data Aggregation Using Clusters in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.Keywords: Aggregation, Clustering, Query Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17337490 A New Protocol for Concealed Data Aggregation in Wireless Sensor Networks
Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie
Abstract:
Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17357489 In Search of Innovation: Exploring the Dynamics of Innovation
Authors: Michal Lysek, Mike Danilovic, Jasmine Lihua Liu
Abstract:
HMS Industrial Networks AB has been recognized as one of the most innovative companies in the industrial communication industry worldwide. The creation of their Anybus innovation during the 1990s contributed considerably to the company’s success. From inception, HMS’ employees were innovating for the purpose of creating new business (the creation phase). After the Anybus innovation, they began the process of internationalization (the commercialization phase), which in turn led them to concentrate on cost reduction, product quality, delivery precision, operational efficiency, and increasing growth (the growth phase). As a result of this transformation, performing new radical innovations have become more complicated. The purpose of our research was to explore the dynamics of innovation at HMS from the aspect of key actors, activities, and events, over the three phases, in order to understand what led to the creation of their Anybus innovation, and why it has become increasingly challenging for HMS to create new radical innovations for the future. Our research methodology was based on a longitudinal, retrospective study from the inception of HMS in 1988 to 2014, a single case study inspired by the grounded theory approach. We conducted 47 interviews and collected 1 024 historical documents for our research. Our analysis has revealed that HMS’ success in creating the Anybus, and developing a successful business around the innovation, was based on three main capabilities – cultivating customer relations on different managerial and organizational levels, inspiring business relations, and balancing complementary human assets for the purpose of business creation. The success of HMS has turned the management’s attention away from past activities of key actors, of their behavior, and how they influenced and stimulated the creation of radical innovations. Nowadays, they are rhetorically focusing on creativity and innovation. All the while, their real actions put emphasis on growth, cost reduction, product quality, delivery precision, operational efficiency, and moneymaking. In the process of becoming an international company, HMS gradually refocused. In so doing they became profitable and successful, but they also forgot what made them innovative in the first place. Fortunately, HMS’ management has come to realize that this is the case and they are now in search of recapturing innovation once again. Our analysis indicates that HMS’ management is facing several barriers to innovation related path dependency and other lock-in phenomena. HMS’ management has been captured, trapped in their mindset and actions, by the success of the past. But now their future has to be secured, and they have come to realize that moneymaking is not everything. In recent years, HMS’ management have begun to search for innovation once more, in order to recapture their past capabilities for creating radical innovations. In order to unlock their managerial perceptions of customer needs and their counter-innovation driven activities and events, to utilize the full potential of their employees and capture the innovation opportunity for the future.Keywords: Barriers to innovation, dynamics of innovation, in search of excellence and innovation, radical innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30617488 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets
Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi
Abstract:
In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.
Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15007487 The New Method of Concealed Data Aggregation in Wireless Sensor: A Case Study
Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie
Abstract:
Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.
Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17687486 Assessing Community Participation in Decision-Making Process under Co-Management: A Case Study on Hail Haor, Bangladesh
Authors: R. Ferdous
Abstract:
Power, responsibility sharing, and democratic decision-making are the central ethos to co-management. It is assumed that involving local community in the decision-making process can create a sense of ownership and responsibility of that community and motivate the community towards collective action. But this paper demonstrated that the process to involve local community is not simple and straightforward as it is influenced by structural aspects, power relations among the actors, and social embedded institutions. These factors shape the process in that way who will participate, how they will participate and how the local community maneuvers their agency in the decision-making process. To grasp the complexities that materialize in the process of participation and to understand the inclusionary and exclusionary nature of participation, this paper examines the subjective understanding of different stakeholders concerning participation and furthermore observes the enabling or constraining factors that affect the community to exercise their agency.
Keywords: Participation, social embeddedness, power, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16877485 Peakwise Smoothing of Data Models using Wavelets
Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan
Abstract:
Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17497484 A New Precautionary Method for Measurement and Improvement the Data Quality
Authors: Seyed Mohammad Hossein Moossavizadeh, Mehran Mohsenzadeh, Nasrin Arshadi
Abstract:
the data quality is a kind of complex and unstructured concept, which is concerned by information systems managers. The reason of this attention is the high amount of Expenses for maintenance and cleaning of the inefficient data. Such a data more than its expenses of lack of quality, cause wrong statistics, analysis and decisions in organizations. Therefor the managers intend to improve the quality of their information systems' data. One of the basic subjects of quality improvement is the evaluation of the amount of it. In this paper, we present a precautionary method, which with its application the data of information systems would have a better quality. Our method would cover different dimensions of data quality; therefor it has necessary integrity. The presented method has tested on three dimensions of accuracy, value-added and believability and the results confirm the improvement and integrity of this method.
Keywords: Data quality, precaution, information system, measurement, improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14687483 An Efficient Data Mining Approach on Compressed Transactions
Authors: Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, Ming-Chuan Hung
Abstract:
In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.Keywords: Association rule, data mining, merged transaction, quantification table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19597482 Weigh-in-Motion Data Analysis Software for Developing Traffic Data for Mechanistic Empirical Pavement Design
Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder
Abstract:
Currently, there are few user friendly Weigh-in- Motion (WIM) data analysis softwares available which can produce traffic input data for the recently developed AASHTOWare pavement Mechanistic-Empirical (ME) design software. However, these softwares have only rudimentary Quality Control (QC) processes. Therefore, they cannot properly deal with erroneous WIM data. As the pavement performance is highly sensible to the quality of WIM data, it is highly recommended to use more refined QC process on raw WIM data to get a good result. This study develops a userfriendly software, which can produce traffic input for the ME design software. This software takes the raw data (Class and Weight data) collected from the WIM station and processes it with a sophisticated QC procedure. Traffic data such as traffic volume, traffic distribution, axle load spectra, etc. can be obtained from this software; which can directly be used in the ME design software.Keywords: Weigh-in-motion, software, axle load spectra, traffic distribution, AASHTOWare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18967481 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs
Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim
Abstract:
A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.
Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10927480 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data
Authors: Sedigheh Mirzaei S., Debasis Sengupta
Abstract:
Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.Keywords: Preece-Baines growth model, MCMC method, Mixed effect model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21397479 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies
Authors: T. S. Myers, J. Trevathan
Abstract:
Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.
Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17157478 Data Migration between Document-Oriented and Relational Databases
Authors: Bogdan Walek, Cyril Klimes
Abstract:
Current tools for data migration between documentoriented and relational databases have several disadvantages. We propose a new approach for data migration between documentoriented and relational databases. During data migration the relational schema of the target (relational database) is automatically created from collection of XML documents. Proposed approach is verified on data migration between document-oriented database IBM Lotus/ Notes Domino and relational database implemented in relational database management system (RDBMS) MySQL.Keywords: data migration, database, document-oriented database, XML, relational schema
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35257477 Venice 17th Century: The Greek Ethnic Identity in Danger
Authors: T. Roussopoulos
Abstract:
At the end of the 17th Century the Greek orthodox Archbishop in Venice -Meletios Typaldos- decided to turn the doctrine of the orthodox Greeks into Catholicism. More than 5.000 Greeks were living in Venice then. Their leadership -the Greek confraternity- fought against Meletios. Participants in this conflict were the Pope, the ecumenical Patriarch in Constantinople and Peter the Great of Russia. All the play according to my opinion -which is followed by evidence and theoretical support is a strong conflict between the two actors -the Archbishop and the Confraternity- and the object of conflict is the change of the Greek orthodox beliefs to Catholicism. Ethnicity especially for Greeks of the era is identified with orthodoxy. So this was a conflict of identity. The results of that conflict were of tremendous importance to the Greeks in Venice and affected them for long.Keywords: Greek ethnic identity, Meletios Typaldos, Confraternity, Venice Pope, Patriarch Constantinople Peter the Great Russia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25447476 Performances and Activities of Urban Communities Leader Based On Sufficiency Economy Philosophy in Dusit District, Bangkok Metropolitan
Authors: Phusit Phukamchanoad
Abstract:
The research studies the behaviors based on sufficiency economy philosophy at individual and community levelsas well as the satisfaction of the urban community leaders by collecting data with purposive sampling technique. For in-depth interviews with 26 urban community leaders, the result shows that the urban community leaders have good knowledge and understanding about sufficiency economy philosophy. Especially in terms of money spending, they must consider the need for living and be economical. The activities in the community or society should not take advantage of the others as well as colleagues. At present, most of the urban community leaders live in sufficient way. They often spend time with public service, but many families are dealing with debt. Many communities have some political conflict and high family allowances because of living in the urban communities with rapid social and economic changes. However, there are many communities that leaders have applied their wisdom in development for their people by gathering and grouping the professionals to form activities such as making chilli sauce, textile organization, making artificial flowers to worship the sanctity. The most prominent group is the foot massage business in Wat Pracha Rabue Tham. This professional group is supported continuously by the government. One of the factors in terms of satisfaction used for evaluating community leaders is the customary administration in brotherly, interdependent way rather than using the absolute power or controlling power, but using the roles of leader to perform the activities with their people intently, determinedly and having public mind for people.
Keywords: Performance and Activities, Sufficiency Economy, Urban Communities Leader.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18797475 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).
Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11207474 Power Saving System in Green Data Center
Authors: Joon-young Jung, Dong-oh Kang, Chang-seok Bae
Abstract:
Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.Keywords: Data Center, Green IT, Management Server, Power Saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16287473 Implementation of a Virtual Testbed for Secure IoT Firmware Update Using Blockchain
Authors: Tarun Chand, Michael Jurczyk
Abstract:
With the increasing need and popularity of IoT devices and how integrated they are becoming in our daily lives and industries; these devices make for a very lucrative target for malicious actors. And since these devices have such limited resources, the implementation of robust security features is a tradeoff to be made for the actual functionality the device was intended for. This makes them an easy target with high returns. Several frameworks for the secure firmware update of these devices have been recently proposed in the literature. They focus on methods such as blockchains and distributed file systems to secure firmware updates, but do not go into the details of the actual implementation of these frameworks and the lower-level interactions among these methods used. This work integrates some of these security measures into one overall framework and details the actual lower-level implementation of this framework in a virtual dockerized testbed running on AWS.
Keywords: Blockchain, Ethereum, Geth, IPFS, secure IoT-firmware update, virtual testbed development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697472 Governmentality and the Norwegian Knowledge Promotion Reform
Authors: Christin Tønseth
Abstract:
The Norwegian ‘knowledge promotion reform’ was implemented in elementary schools and upper secondary schools in 2006. The goal of the reform was that all pupils should develop basic skills and competencies in order to take an active part in the knowledge society. This paper discusses how governmentality as a management principle is demonstrated through the Norwegian ‘knowledge promotion reform’. Evaluation reports and political documents are the basis for the discussion. The ‘knowledge promotion reform’ was including quality assurance for schools, teachers, and students and the authorities retained control by using curricula and national tests. The reform promoted several intentions that were not reached. In light of governmentality, it seemed that thoughts and intentions by the authorities differed from those in the world of practice. The quality assurances did not motivate the practitioners to be self-governing. The relationship between the authorities and the implementation actors was weak, and the reform was, therefore, difficult to implement in practice.
Keywords: Education politics, governance, governmentality, the Norwegian knowledge promotion reform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11737471 Exploring the Roles of Social Exchanges in Using Information Systems
Authors: Kee-Young Kwahk
Abstract:
Previous studies have indicated that one of the most critical failure reasons of enterprise systems is the lack of knowledge sharing and utilization across organizations. As a consequence, many information systems researchers have paid attention to examining the effect of absorptive capacity closely associated with knowledge sharing and transferring on IS usage performance. A lack of communications and interactions due to a lack of organizational citizenship behavior might lead to weak absorptive capacity and thus negatively influence knowledge sharing across organizations. In this study, a theoretical model which delves into the relationship between usage performance of enterprise systems and its determinants was established.
Keywords: Usage performance of information systems, Social exchanges, Enterprise systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19537470 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704