Search results for: Prediction of financial markets
1604 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.
Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8271603 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651602 Comparative Approach of Measuring Price Risk on Romanian and International Wheat Market
Authors: Larisa N. Pop, Irina M. Ban
Abstract:
This paper aims to present the main instruments used in the economic literature for measuring the price risk, pointing out on the advantages brought by the conditional variance in this respect. The theoretical approach will be exemplified by elaborating an EGARCH model for the price returns of wheat, both on Romanian and on international market. To our knowledge, no previous empirical research, either on price risk measurement for the Romanian markets or studies that use the ARIMA-EGARCH methodology, have been conducted. After estimating the corresponding models, the paper will compare the estimated conditional variance on the two markets.Keywords: conditional variance, GARCH models, price risk, volatility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14491601 The Intuitionistic Fuzzy Ordered Weighted Averaging-Weighted Average Operator and its Application in Financial Decision Making
Authors: Shouzhen Zeng
Abstract:
We present a new intuitionistic fuzzy aggregation operator called the intuitionistic fuzzy ordered weighted averaging-weighted average (IFOWAWA) operator. The main advantage of the IFOWAWA operator is that it unifies the OWA operator with the WA in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to deal with an uncertain environment that can be assessed with intuitionistic fuzzy numbers. We study some of its main properties and we see that it has a lot of particular cases such as the intuitionistic fuzzy weighted average (IFWA) and the intuitionistic fuzzy OWA (IFOWA) operator. Finally, we study the applicability of the new approach on a financial decision making problem concerning the selection of financial strategies.Keywords: Intuitionistic fuzzy numbers, Weighted average, OWA operator, Financial decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24401600 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period
Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider
Abstract:
This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21091599 Layers of Commerce: Modelling the Onion Trade of Dubai
Authors: Priti Bajpai, Mohammed Shibil
Abstract:
This paper utilizes a comparative case study design to examine a regional onion market. The particular case of onion markets is used to understand perishable product supply chains. The site for the study is Dubai, United Arab Emirates. Results from a six-month field study are outlined. In particular, the findings suggest that firms should examine adding additional destinations to their supply chain. Further, we argue that utilizing Dubai as a supply chain hub is in certain cases counterproductive. Implications for food supply chains and regional trade are discussed.Keywords: Supply chains, Food markets, Onion trade, Field study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12081598 Exploring the Relationships among Shopping Motivation, Shopping Behavior, and Post- Purchasing Behavior of Mainland Tourists toward Taipei Night Markets
Authors: Ren-Hua Kung, Jen-Chieh Liu , Chih-Teng Chang, Pei-Ti Chen
Abstract:
The consumption capability of people in China has been a big issue to tourism business. Due to the increasing of China tourists, Taiwan-s government rescinded the category of people in China and opened up the non-stopped airline from China to Taiwan. The “one-day traveling style between China and Taiwan" has formed, hoping to bring business to Taiwan. Night market, which shows foreigners the very local character of Taiwan, contains various merchandise for consumers to purchase. With the increasing numbers of non-stopped airline, visiting Taiwan-s night markets has also been one of major activities to China-s tourists. The purpose of the present study is to understand the consumer behavior of China tourists in tourist night markets in Taipei and analyze that if their shopping motives cause the different shopping behaviors and post-purchase satisfaction and revisiting intention. The results reveled that for the China tourists, the motives of significant influence to the shopping behaviors. Also, the shopping behaviors significant influence to the whole satisfaction and the whole satisfaction significant influence to post-purchase behavior.Keywords: Shopping Motivation, Shopping Behavior, Satisfaction, Post-Purchase Behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411597 Effective Communication with the Czech Customers 50+ in the Financial Market
Authors: K. Matušínská, H. Starzyczná, M. Stoklasa
Abstract:
The paper deals with finding and describing of the effective marketing communication forms relating to the segment 50+ in the financial market in the Czech Republic. The segment 50+ can be seen as a great marketing potential in the future but unfortunately the Czech financial institutions haven´t still reacted enough to this fact and they haven´t prepared appropriate marketing programs for this customers´ segment. Demographic aging is a fundamental characteristic of the current European population evolution but the perspective of further population aging is more noticeable in the Czech Republic. This paper is based on data from one part of primary marketing research. Paper determinates the basic problem areas as well as definition of marketing communication in the financial market, defining the primary research problem, hypothesis and primary research methodology. Finally suitable marketing communication approach to selected sub-segment at age of 50-60 years is proposed according to marketing research findings.Keywords: Population aging in the Czech Republic, segment 50+, financial services, marketing communication, marketing research, marketing communication approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12221596 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation
Authors: Joseph C. Chen, Venkata Mohan Kudapa
Abstract:
Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4931595 Secure Cryptographic Operations on SIM Card for Mobile Financial Services
Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas
Abstract:
Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.Keywords: SIM Card, mobile financial services, cryptography, secure data storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651594 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.
Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11271593 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11871592 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.
Keywords: Bioassay, machine learning, preprocessing, virtual screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9811591 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15701590 Consumer Adoption - Risk Factor of Mobile Banking Services
Authors: Esad Kadušić, Petar Bojović, Amela Žgalj
Abstract:
Mobile banking services present a unique growth opportunity for mobile operators in emerging markets, and have already made good progress in bringing financial services to the previously unbanked populations of many developing countries. The potential is amazing, but what about the risks? In the complex process of establishing a mobile banking business model, many kinds of risks and factors need to be monitored and well-managed. Risk identification is the first stage of risk management. Correct risk identification ensures risk management effectiveness. Keeping the risks low makes it possible to use the full potential of mobile banking and carry out the planned business strategy. The focus should be on adoption of consumers which is the main risk factor of mobile banking services.Keywords: Consumer Adoption, Mobile Banking, Risk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24741589 Identifying and Prioritizing Goals of Joint Venture between Manufacturing Cooperative Firms, using TOPSIS
Authors: H. Zare Amadabadi, S. Soltani Gerdefaramarzi
Abstract:
In recent years, strategic alliances have taken increasing importance as a means to control competitive forces and to enter into new markets. Joint ventures are one of the most frequently used contractual forms in strategic alliances. There are various motivations for cooperation between two or more firms e.g., accessing to technical know-how, accessing to financial resources and managing risks. The firms must know about these motivations to encourage for establishing joint venture. So, it is important for managers to understand about these motives. On the other hand, the cooperation section is one of the most effective parts in each country. In this way, our study identifies goals of joint venture between cooperative manufacturing firms, and prioritizes those using TOPSIS1. The results show that the most important of joint venture goals are: accessing to managerial know-how, sharing total capital investment.Keywords: Cooperative, Joint Venture, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21581588 Robust Regression and its Application in Financial Data Analysis
Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani
Abstract:
This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.
Keywords: Financial data analysis, Influential data, Outliers, Robust regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321587 A Study on Prediction of Cavitation for Centrifugal Pump
Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung
Abstract:
In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42221586 An Institutional Analysis of IFRS Adoption in Poor Jurisdictions
Authors: C. F. Pricope
Abstract:
The last two decades witnessed a movement towards harmonization of international financial reporting standards (IFRS) throughout the global economy. This investigation seeks to identify the factors that could explain the adoption of IFRS by poor jurisdictions. While there has been a considerable amount of literature published on the effects and key drivers of IFRS adoption in both developed and developing countries, little attention has been paid to jurisdictions with less developed capital markets and low income levels exclusively. Drawing upon the Institutional Isomorphism theory and analyzing a sample of 45 poor jurisdictions between 2008 and 2013, the study empirically shows that poor jurisdictions are driven by legitimacy concerns rather than by economic reasoning to adopt an international accounting perspective. This in turn has implications for the IASB, as it should seek to influence institutional pressures within a particular jurisdiction in order to promote IFRS adoption.Keywords: IFRS Adoption, isomorphism, poor jurisdictions, accounting harmonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23541585 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections
Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong
Abstract:
In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.
Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651584 Internal Accounting Controls
Authors: Alireza Azimi Sani , Shahram Chaharmahalie
Abstract:
Internal controls of accounting are an essential business function for a growth-oriented organization, and include the elements of risk assessment, information communications and even employees' roles and responsibilities. Internal controls of accounting systems are designed to protect a company from fraud, abuse and inaccurate data recording and help organizations keep track of essential financial activities. Internal controls of accounting provide a streamlined solution for organizing all accounting procedures and ensuring that the accounting cycle is completed consistently and successfully. Implementing a formal Accounting Procedures Manual for the organization allows the financial department to facilitate several processes and maintain rigorous standards. Internal controls also allow organizations to keep detailed records, manage and organize important financial transactions and set a high standard for the organization's financial management structure and protocols. A well-implemented system also reduces the risk of accounting errors and abuse. A well-implemented controls system allows a company's financial managers to regulate and streamline all functions of the accounting department. Internal controls of accounting can be set up for every area to track deposits, monitor check handling, keep track of creditor accounts, and even assess budgets and financial statements on an ongoing basis. Setting up an effective accounting system to monitor accounting reports, analyze records and protect sensitive financial information also can help a company set clear goals and make accurate projections. Creating efficient accounting processes allows an organization to set specific policies and protocols on accounting procedures, and reach its financial objectives on a regular basis. Internal accounting controls can help keep track of such areas as cash-receipt recording, payroll management, appropriate recording of grants and gifts, cash disbursements by authorized personnel, and the recording of assets. These systems also can take into account any government regulations and requirements for financial reporting.Keywords: Internal controls, risk assessment, financial management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251583 The Effect of Corporate Diversification on the Profitability of the Financial Services Sector in Nigeria
Authors: Ugwuanyi, Georgina Obinne, Ugwu, Joy Nonye
Abstract:
This paper examines the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The study relied on historic accounting data generated from financial (annual) reports and accounts of sampled banks between the period 1998 and 2007 (a ten-year period). A regression equation was formulated, in line with previous studies to shed light on the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The results of the regression analysis revealed that diversification impacts strongly on banks profitability. Conclusively the paper produces strong evidence to assert that diversification impacts positively and significantly on banks profitability because among other things such diversified banks can pool their internally generated funds and allocate them properly.
Keywords: Diversification, firm size, operational efficiency, profitability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29641582 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27661581 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831580 Impact of Changes of the Conceptual Framework for Financial Reporting on the Indicators of the Financial Statement
Authors: Nadezhda Kvatashidze
Abstract:
The International Accounting Standards Board updated the conceptual framework for financial reporting. The main reason behind it is to resolve the tasks of the accounting, which are caused by the market development and business-transactions of a new economic content. Also, the investors call for higher transparency of information and responsibility for the results in order to make a more accurate risk assessment and forecast. All these make it necessary to further develop the conceptual framework for financial reporting so that the users get useful information. The market development and certain shortcomings of the conceptual framework revealed in practice require its reconsideration and finding new solutions. Some issues and concepts, such as disclosure and supply of information, its qualitative characteristics, assessment, and measurement uncertainty had to be supplemented and perfected. The criteria of recognition of certain elements (assets and liabilities) of reporting had to be updated, too and all this is set out in the updated edition of the conceptual framework for financial reporting, a comprehensive collection of concepts underlying preparation of the financial statement. The main objective of conceptual framework revision is to improve financial reporting and development of clear concepts package. This will support International Accounting Standards Board (IASB) to set common “Approach & Reflection” for similar transactions on the basis of mutually accepted concepts. As a result, companies will be able to develop coherent accounting policies for those transactions or events that are occurred from particular deals to which no standard is used or when standard allows choice of accounting policy.
Keywords: Conceptual framework, measurement basis, measurement uncertainty, neutrality, prudence, stewardship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25091579 Gender Differences in Risk Aversion Behavior: Case Study of Saudi Arabia and Jordan
Authors: Razan Salem
Abstract:
Men and women have different approaches towards investing, both in terms of strategies and risk attitudes. This study aims to focus mainly on investigating the financial risk behaviors of Arab women investors and to examine the financial risk tolerance levels of Arab women relative to Arab men investors. Using survey data on 547 Arab men and women investors, the results of Wilcoxon Signed-Rank (One-Sample) test Mann-Whitney U test reveal that Arab women are risk-averse investors and have lower financial risk tolerance levels relative to Arab men. Such findings can be explained by the fact of women's nature and lower investment literacy levels. Further, the current political uncertainty in the Arab region may be considered as another explanation of Arab women’s risk aversion behavior. The study's findings support the existing literature by validating the stereotype of “women are more risk-averse than men” in the Arab region. Overall, when it comes to investment and financial behaviors, women around the world behave similarly.
Keywords: Arab region, financial risk behavior, gender differences, women investors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9791578 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871577 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna
Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma
Abstract:
Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.Keywords: MLP, ANN, parameter, prediction, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571576 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341575 Debts and Debt-Based Sukuk Related to Risk Shifting Behavior
Authors: Siti Raihana Hamzah
Abstract:
This paper elaborates risk shifting in debt financing system as the ultimate cause of the global financial crisis. In contrast, risk sharing in equity financing like sukuk helps the economic system to be better sustained. Nevertheless, some types of sukuk are haunted by the issue of imitation with bonds. The critics on the imitation issue not only have raised doubt on the ability of sukuk to diminish risk shifting behavior but also the ability of this Islamic financial instrument to ensure better future financial stability. Through that, this paper provides discussion on the possibility of sukuk to induce risk shifting and how equity financing may help sukuk to be free from risk shifting. This paper is important in the sense that sukuk receives a significant demand from investors throughout the world. For this instrument to be supportive in the future economic stability, the issue of imitation needs to be identified and addressed. Furthermore, critics cannot be focused on debts and its ability to gauge the financial flux but also to sukuk due to their structures similarity.
Keywords: Global financial crisis, debt, risk-shifting, risk sharing, equity, sukuk, bonds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556