Search results for: Multidisciplinary Design Optimization (MDO)
5914 Non-Sensitive Solutions in Multi-Objective Optimization of a Solar Photovoltaic/Thermal(PV/T) Air Collector
Authors: F. Sarhaddi, S. Farahat, M .A. Alavi, F. Sobhnamayan
Abstract:
In this paper, an attempt has been made to obtain nonsensitive solutions in the multi-objective optimization of a photovoltaic/thermal (PV/T) air collector. The selected objective functions are overall energy efficiency and exergy efficiency. Improved thermal, electrical and exergy models are used to calculate the thermal and electrical parameters, overall energy efficiency, exergy components and exergy efficiency of a typical PV/T air collector. A computer simulation program is also developed. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, multi-objective optimization has been carried out under given climatic, operating and design parameters. The optimized ranges of inlet air velocity, duct depth and the objective functions in optimal Pareto front have been obtained. Furthermore, non-sensitive solutions from energy or exergy point of view in the results of multi-objective optimization have been shown.Keywords: Solar photovoltaic thermal (PV/T) air collector, Overall energy efficiency, Exergy efficiency, Multi-objectiveoptimization, Sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21575913 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20085912 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems
Authors: I. Abuiziah, N. Shakarneh
Abstract:
Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.
Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51025911 SENSE-SEAT: Improving Creativity and Productivity through the Redesign of a Multisensory Technological Office Chair
Authors: Fernando Miguel Campos, Carlos Ferreira, João Pestana, Pedro Campos, Nils Ehrenberg, Wojciech Hydzik
Abstract:
The current trend of organizations offering their workers open-office spaces and co-working offices has been primed for stimulating teamwork and collaboration. However, this is not always valid as these kinds of spaces bring other types of challenges that compromise workers productivity and creativity. We present an approach for improving creativity and productivity at the workspace by redesigning an office chair that incorporates subtle technological elements that help users focus, relax and being more productive and creative. This sheds light on how we can better design interactive furniture for such popular contexts, as we develop this new chair through a multidisciplinary approach using ergonomics, interior design, interaction design, hardware and software engineering and psychology.
Keywords: Creativity, co-working, ergonomics, human-computer interaction, interaction, interactive furniture, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9795910 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.
Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11315909 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems
Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira
Abstract:
Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.
Keywords: Particle swarm optimization, migration, variable neighborhood search, multiobjective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8095908 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications
Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison
Abstract:
In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.Keywords: Economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15825907 Improved Ant Colony Optimization for Solving Reliability Redundancy Allocation Problems
Authors: Phakhapong Thanitakul, Worawat Sa-ngiamvibool, Apinan Aurasopon, Saravuth Pothiya
Abstract:
This paper presents an improved ant colony optimization (IACO) for solving the reliability redundancy allocation problem (RAP) in order to maximize system reliability. To improve the performance of ACO algorithm, two additional techniques, i.e. neighborhood search, and re-initialization process are presented. To show its efficiency and effectiveness, the proposed IACO is applied to solve three RAPs. Additionally, the results of the proposed IACO are compared with those of the conventional heuristic approaches i.e. genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). The experimental results show that the proposed IACO approach is comparatively capable of obtaining higher quality solution and faster computational time.
Keywords: Ant colony optimization, Heuristic algorithm, Mixed-integer nonlinear programming, Redundancy allocation problem, Reliability optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20945906 Hybrid Optimization of Emission and Economic Dispatch by the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization
Authors: Joko Pitono, Adi Soeprijanto, Takashi Hiyama
Abstract:
This paper present an efficient and reliable technique of optimization which combined fuel cost economic optimization and emission dispatch using the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization algorithm (PSO) to reduce the cost of fuel and pollutants resulting from fuel combustion by keeping the output of generators, bus voltages, shunt capacitors and transformer tap settings within the security boundary. The performance of the proposed algorithm has been demonstrated on IEEE 30-bus system with six generating units. The results clearly show that the proposed algorithm gives better and faster speed convergence then linearly decreasing inertia weight.
Keywords: Optimal Power Flow, Combined Economic Emission Dispatch, Sigmoid decreasing Inertia Weight, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16895905 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19415904 Design of a Robust Controller for AGC with Combined Intelligence Techniques
Authors: R. N. Patel, S. K. Sinha, R. Prasad
Abstract:
In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.
Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17895903 A Method for Improving Dental Crown Fit-Increasing the Robustness
Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.
Abstract:
The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16215902 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization
Authors: Panpan Xu, Shulin Sui, Zongjie Du
Abstract:
Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25525901 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.
Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5595900 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil
Abstract:
Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.
Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19385899 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm
Authors: J. S. Yadav, N. P. Patidar, J. Singhai
Abstract:
One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19045898 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials
Authors: Pradeep M., N. S. Mahesh, Raja Hussain
Abstract:
Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.
Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51895897 Statistical Optimization of the Enzymatic Saccharification of the Oil Palm Empty Fruit Bunches
Authors: Rashid S. S., Alam M. Z.
Abstract:
A statistical optimization of the saccharification process of EFB was studied. The statistical analysis was done by applying faced centered central composite design (FCCCD) under response surface methodology (RSM). In this investigation, EFB dose, enzyme dose and saccharification period was examined, and the maximum 53.45% (w/w) yield of reducing sugar was found with 4% (w/v) of EFB, 10% (v/v) of enzyme after 120 hours of incubation. It can be calculated that the conversion rate of cellulose content of the substrate is more than 75% (w/w) which can be considered as a remarkable achievement. All the variables, linear, quadratic and interaction coefficient, were found to be highly significant, other than two coefficients, one quadratic and another interaction coefficient. The coefficient of determination (R2) is 0.9898 that confirms a satisfactory data and indicated that approximately 98.98% of the variability in the dependent variable, saccharification of EFB, could be explained by this model.Keywords: Face centered central composite design (FCCCD), Liquid state bioconversion (LSB), Palm oil mill effluent, Trichoderma reesei RUT C-30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22515896 A New Tool for Global Optimization Problems- Cuttlefish Algorithm
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.
Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38315895 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.
Keywords: Availability, design for maintenance, DFM, dynamic maintenance, life cycle cost, LCC, maintenance free operating period, MFOP, simultaneous optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5975894 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm
Abstract:
With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13555893 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19665892 Bioprocess Optimization Based On Relevance Vector Regression Models and Evolutionary Programming Technique
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte
Abstract:
This paper proposes a bioprocess optimization procedure based on Relevance Vector Regression models and evolutionary programming technique. Relevance Vector Regression scheme allows developing a compact and stable data-based process model avoiding time-consuming modeling expenses. The model building and process optimization procedure could be done in a half-automated way and repeated after every new cultivation run. The proposed technique was tested in a simulated mammalian cell cultivation process. The obtained results are promising and could be attractive for optimization of industrial bioprocesses.
Keywords: Bioprocess optimization, Evolutionary programming, Relevance Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21955891 Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey
Authors: C. Deepika, J. Nithya
Abstract:
Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.
Keywords: Ant colony optimization, Artificial bee colony optimization, Cuckoo search algorithm, Image segmentation, Multilevel thresholding, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35235890 Fuzzy Optimization in Metabolic Systems
Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu
Abstract:
The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.
Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20205889 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: Expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23815888 Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning
Authors: Sandeep Singh Gill, Rajeevan Chandel, Ashwani Chandel
Abstract:
This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.
Keywords: Partitioning, genetic algorithm, ant colony optimization, non-polynomial hard, netlist, mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22495887 Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm
Authors: Kyoungwoo Park, Byeong-Sam Kim
Abstract:
Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19595886 Optimized Weight Vector for QoS Aware Web Service Selection Algorithm Using Particle Swarm Optimization
Authors: N. Arulanand, P. M. Ananth
Abstract:
Quality of Service (QoS) attributes as part of the service description is an important factor for service attribute. It is not easy to exactly quantify the weight of each QoS conditions since human judgments based on their preference causes vagueness. As web services selection requires optimization, evolutionary computing based on heuristics to select an optimal solution is adopted. In this work, the evolutionary computing technique Particle Swarm Optimization (PSO) is used for selecting a suitable web services based on the user’s weightage of each QoS values by optimizing the QoS weight vector and thereby finding the best weight vectors for best services that is being selected. Finally the results are compared and analyzed using static inertia weight and deterministic inertia weight of PSO.Keywords: QoS, Optimization, Particle Swarm Optimization (PSO), weight vector, web services, web service selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20155885 Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization
Authors: S.Shokri, S.Zahedi, M.Ahmadi Marvast, B. Baloochi, H.Ganji
Abstract:
In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .
Keywords: Statistical model, Multiphase Reactors, Gas oil, Hydrodesulfurization, Optimization, Kinetics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686