Search results for: Adaptive Repository
603 Adaptive Conjoint Analysis of Professionals’ Job Preferences
Authors: N. Scheidegger, A. Mueller
Abstract:
Job preferences are a well-developed research field. Many studies analyze the preferences using simple ratings with a sample of university graduates. The current study analyzes the preferences with a mixed method approach of a qualitative preliminary study and adaptive conjoint-analysis. Preconditions of accepting job offers are clarified for professionals in the industrial sector. It could be shown that, e.g. wages above the average are critical and that career opportunities must be seen broader than merely a focus on formal personnel development programs. The results suggest that, to be effective with their recruitment efforts, employers must take into account key desirable job attributes of their target group.
Keywords: Conjoint analysis, employer attractiveness, job preferences, personnel marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971602 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic
Authors: Mubarak Alhajri
Abstract:
This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.Keywords: Adaptive control, convergence, hysteresis constant, hysteresis switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890601 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System
Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.
Abstract:
In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.
Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851600 Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding
Authors: T. Damak, S. Houidi, M. A. Ben Ayed, N. Masmoudi
Abstract:
The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.
Keywords: AMT, DCT II, hardware, transform, VVC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580599 A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals
Authors: V. Prapulla, A. Mitra, R. Bhattacharjee, S. Nandi
Abstract:
We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.Keywords: Adaptive decision feedback equalizer, Fractionally spaced equalizer, π/4 DQPSK signal, Digital signal processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5736598 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System
Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami
Abstract:
In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962597 Adaptive Filtering of Heart Rate Signals for an Improved Measure of Cardiac Autonomic Control
Authors: Desmond B. Keenan, Paul Grossman
Abstract:
In order to provide accurate heart rate variability indices of sympathetic and parasympathetic activity, the low frequency and high frequency components of an RR heart rate signal must be adequately separated. This is not always possible by just applying spectral analysis, as power from the high and low frequency components often leak into their adjacent bands. Furthermore, without the respiratory spectra it is not obvious that the low frequency component is not another respiratory component, which can appear in the lower band. This paper describes an adaptive filter, which aids the separation of the low frequency sympathetic and high frequency parasympathetic components from an ECG R-R interval signal, enabling the attainment of more accurate heart rate variability measures. The algorithm is applied to simulated signals and heart rate and respiratory signals acquired from an ambulatory monitor incorporating single lead ECG and inductive plethysmography sensors embedded in a garment. The results show an improvement over standard heart rate variability spectral measurements.Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, spectral analysis, adaptive filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753596 Shot Detection Using Modified Dugad Model
Authors: Lenka Krulikovská, Jaroslav Polec
Abstract:
In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.
Keywords: Abrupt cut, shot cut detection, adaptive threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531595 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058594 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089593 Adaptive Kernel Principal Analysis for Online Feature Extraction
Authors: Mingtao Ding, Zheng Tian, Haixia Xu
Abstract:
The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.
Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550592 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations
Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer
Abstract:
In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.
Keywords: Power system, stability, oscillations, power system stabilizer, model reference adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627591 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems
Authors: Dong Sang Yoo
Abstract:
We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.
Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651590 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930589 Contrast Enhancement of Color Images with Color Morphing Approach
Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi
Abstract:
Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.
Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104588 Adaptive Discharge Time Control for Battery Operation Time Enhancement
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.
Keywords: Battery, Recovery Effect, Low-Power, Alternating Battery Cell Discharging, Adaptive Discharge Time Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497587 Matrix Completion with Heterogeneous Observation Cost Using Sparsity-Number of Column-Space
Authors: Ilqar Ramazanli
Abstract:
The matrix completion problem has been studied broadly under many underlying conditions. In many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but, within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.
Keywords: Matrix completion, adaptive learning, heterogeneous cost, Matroid optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493586 Distributed Estimation Using an Improved Incremental Distributed LMS Algorithm
Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili
Abstract:
In this paper we consider the problem of distributed adaptive estimation in wireless sensor networks for two different observation noise conditions. In the first case, we assume that there are some sensors with high observation noise variance (noisy sensors) in the network. In the second case, different variance for observation noise is assumed among the sensors which is more close to real scenario. In both cases, an initial estimate of each sensor-s observation noise is obtained. For the first case, we show that when there are such sensors in the network, the performance of conventional distributed adaptive estimation algorithms such as incremental distributed least mean square (IDLMS) algorithm drastically decreases. In addition, detecting and ignoring these sensors leads to a better performance in a sense of estimation. In the next step, we propose a simple algorithm to detect theses noisy sensors and modify the IDLMS algorithm to deal with noisy sensors. For the second case, we propose a new algorithm in which the step-size parameter is adjusted for each sensor according to its observation noise variance. As the simulation results show, the proposed methods outperforms the IDLMS algorithm in the same condition.
Keywords: Distributes estimation, sensor networks, adaptive filter, IDLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444585 Sensorless Backstepping Control Using an Adaptive Luenberger Observer with Three Levels NPC Inverter
Authors: A. Bennassar, A. Abbou, M. Akherraz, M. Barara
Abstract:
In this paper, we propose a sensorless backstepping control of induction motor (IM) associated with three levels neutral clamped (NPC) inverter. First, the backstepping approach is designed to steer the flux and speed variables to theirs references and to compensate the uncertainties. A Lyapunov theory is used and it demonstrates that the dynamic trajectories tracking are asymptotically stable. Second, we estimate the rotor flux and speed by using the adaptive Luenberger observer (ALO). Simulation results are provided to illustrate the performance of the proposed approach in high and low speeds and load torque disturbance.
Keywords: Sensorless backstepping, IM, Three levels NPC inverter, Lyapunov theory, ALO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205584 Implementing Adaptive Steganography by Exploring the Ycbcr Color Model Characteristics
Authors: Surbhi Gupta, Alka Handa, Parvinder S.Sandhu
Abstract:
Stegnography is a new way of secret communication the most widely used mechanism on account of its simplicity is the use of the least significant bit. We have used the least significant bit (2 LSB and 4 LSB) substitution method. Depending upon the characteristics of the individual portions of cover image we decide whether to use 2 LSB or 4 LSB thus it is an adaptive stegnography technique. We used one of the three channels to behave as indicator to indicate the presence of hidden data in other two channels. The module showed impressive results in terms of capacity to hide the data. In proposed method, instead of using RGB color space directly, YCbCr color space is used to make use of human visual system characteristic.Keywords: Stegoimage, steganography, Pixel indicator, segmentation, YCbCr..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181583 Adaptive Motion Estimator Based on Variable Block Size Scheme
Authors: S. Dhahri, A. Zitouni, H. Chaouch, R. Tourki
Abstract:
This paper presents an adaptive motion estimator that can be dynamically reconfigured by the best algorithm depending on the variation of the video nature during the lifetime of an application under running. The 4 Step Search (4SS) and the Gradient Search (GS) algorithms are integrated in the estimator in order to be used in the case of rapid and slow video sequences respectively. The Full Search Block Matching (FSBM) algorithm has been also integrated in order to be used in the case of the video sequences which are not real time oriented. In order to efficiently reduce the computational cost while achieving better visual quality with low cost power, the proposed motion estimator is based on a Variable Block Size (VBS) scheme that uses only the 16x16, 16x8, 8x16 and 8x8 modes. Experimental results show that the adaptive motion estimator allows better results in term of Peak Signal to Noise Ratio (PSNR), computational cost, FPGA occupied area, and dissipated power relatively to the most popular variable block size schemes presented in the literature.Keywords: H264, Configurable Motion Estimator, VariableBlock Size, PSNR, Dissipated power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654582 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828581 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4933580 Towards a Computational Model of Consciousness: Global Abstraction Workspace
Authors: Halim Djerroud, Arab Ali Cherif
Abstract:
We assume that conscious functions are implemented automatically. In other words that consciousness as well as the non-consciousness aspect of human thought, planning and perception, are produced by biologically adaptive algorithms. We propose that the mechanisms of consciousness can be produced using similar adaptive algorithms to those executed by the mechanism. In this paper, we present a computational model of consciousness, the ”Global Abstraction Workspace” which is an internal environmental modelling perceived as a multi-agent system. This system is able to evolve and generate new data and processes as well as actions in the environment.Keywords: Artificial consciousness, cognitive architecture, global abstraction workspace, mutli-agents system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583579 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction
Authors: Grzegorz Ulacha, Ryszard Stasiński
Abstract:
In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349578 Understanding Workplace Behavior through Organizational Culture and Complex Adaptive Systems Theory
Authors: Péter Restás, Andrea Czibor, Zsolt Péter Szabó
Abstract:
Purpose: This article aims to rethink the phenomena of employee behavior as a product of a system. Both organizational culture and Complex Adaptive Systems (CAS) theory emphasize that individual behavior depends on the specific system and the unique organizational culture. These two major theories are both represented in the field of organizational studies; however, they are rarely used together for the comprehensive understanding of workplace behavior. Methodology: By reviewing the literature we use key concepts stemming from organizational culture and CAS theory in order to show the similarities between these theories and create an enriched understanding of employee behavior. Findings: a) Workplace behavior is defined here as social cognition issue. b) Organizations are discussed here as complex systems, and cultures which drive and dictate the cognitive processes of agents in the system. c) Culture gives CAS theory a context which lets us see organizations not just as ever-changing and unpredictable, but as such systems that aim to create and maintain stability by recurring behavior. Conclusion: Applying the knowledge from culture and CAS theory sheds light on our present understanding of employee behavior, also emphasizes the importance of novel ways in organizational research and management.
Keywords: Complex adaptive systems theory, employee behavior, organizational culture, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363577 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480576 Towards the Creation of Adaptive Content from Web Resources in an E-Learning Platform to Learners Profiles
Authors: M. Chaoui, M-T. Laskri
Abstract:
The evolution of information and communication technology has made a very powerful support for the improvement of online learning platforms in creation of courses. This paper presents a study that attempts to explore new web architecture for creating an adaptive online learning system to profiles of learners, using the Web as a source for the automatic creation of courses for the online training platform. This architecture will reduce the time and decrease the effort performed by the drafters of the current e-learning platform, and direct adaptation of the Web content will greatly enrich the quality of online training courses.Keywords: Web Content, e-Learning, Educational Content, LMS, Profiles of Learners
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522575 A Simple Adaptive Algorithm for Norm-Constrained Optimization
Authors: Hyun-Chool Shin
Abstract:
In this paper we propose a simple adaptive algorithm iteratively solving the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates scalar normalization which is computationally much simpler. The analysis of stationary point is presented to show that the proposed algorithm indeed solves the constrained optimization problem. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.Keywords: constrained optimization, unit-norm, LMS, principle component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127574 Assessment of the Adaptive Pushover Analysis Using Displacement-based Loading in Prediction the Seismic Behaviour of the Unsymmetric-Plan Buildings
Authors: M.O. Makhmalbaf, F. Mohajeri Nav, M. Zabihi Samani
Abstract:
The recent drive for use of performance-based methodologies in design and assessment of structures in seismic areas has significantly increased the demand for the development of reliable nonlinear inelastic static pushover analysis tools. As a result, the adaptive pushover methods have been developed during the last decade, which unlike their conventional pushover counterparts, feature the ability to account for the effect that higher modes of vibration and progressive stiffness degradation might have on the distribution of seismic storey forces. Even in advanced pushover methods, little attention has been paid to the Unsymmetric structures. This study evaluates the seismic demands for three dimensional Unsymmetric-Plan buildings determined by the Displacement-based Adaptive Pushover (DAP) analysis, which has been introduced by Antoniou and Pinho [2004]. The capability of DAP procedure in capturing the torsional effects due to the irregularities of the structures, is investigated by comparing its estimates to the exact results, obtained from Incremental Dynamic Analysis (IDA). Also the capability of the procedure in prediction the seismic behaviour of the structure is discussed.
Keywords: Nonlinear static procedures, Unsymmetric-PlanBuildings, Torsional effects, IDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767