Search results for: Control Flow Graph
3642 Planning Rigid Body Motions and Optimal Control Problem on Lie Group SO(2, 1)
Authors: Nemat Abazari, Ilgin Sager
Abstract:
In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.
Keywords: Optimal control, Hamiltonian vector field, Darboux vector, maximum principle, lie group, rigid body motion, Lorentz metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15703641 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines
Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub
Abstract:
This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56093640 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.
Keywords: Cognitive decline, functional connectivity, MCI, MMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24103639 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.
Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7113638 Imposing Speed Constraints on Arrival Flights: Case Study for Changi Airport
Authors: S. Aneeka, S.M. Phyoe, R. Guo, Z.W. Zhong
Abstract:
Arrival flights tend to spend long waiting times at holding stacks if the arrival airport is congested. However, the waiting time spent in the air in the vicinity of the arrival airport may be reduced if the delays are distributed to the cruising phase of the arrival flights by means of speed control. Here, a case study was conducted for the flights arriving at Changi Airport. The flights that were assigned holdings were simulated to fly at a reduced speed during the cruising phase. As the study involves a single airport and is limited to imposing speed constraints to arrivals within 200 NM from its location, the simulation setup in this study could be considered as an application of the Extended Arrival Management (E-AMAN) technique, which is proven to result in considerable fuel savings and more efficient management of delays. The objective of this experiment was to quantify the benefits of imposing cruise speed constraints to arrivals at Changi Airport and to assess the effects on controllers’ workload. The simulation results indicated considerable fuel savings, reduced aircraft emissions and reduced controller workload.
Keywords: Aircraft emissions, air traffic flow management, controller workload, fuel consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13383637 Packet Reserving and Clogging Control via Routing Aware Packet Reserving Framework in MANET
Authors: C. Sathiyakumar, K. Duraiswamy
Abstract:
In MANET, mobile nodes communicate with each other using the wireless channel where transmission takes place with significant interference. The wireless medium used in MANET is a shared resource used by all the nodes available in MANET. Packet reserving is one important resource management scheme which controls the allocation of bandwidth among multiple flows through node cooperation in MANET. This paper proposes packet reserving and clogging control via Routing Aware Packet Reserving (RAPR) framework in MANET. It mainly focuses the end-to-end routing condition with maximal throughput. RAPR is complimentary system where the packet reserving utilizes local routing information available in each node. Path setup in RAPR estimates the security level of the system, and symbolizes the end-to-end routing by controlling the clogging. RAPR reaches the packet to the destination with high probability ratio and minimal delay count. The standard performance measures such as network security level, communication overhead, end-to-end throughput, resource utilization efficiency and delay measure are considered in this work. The results reveals that the proposed packet reservation and clogging control via Routing Aware Packet Reserving (RAPR) framework performs well for the above said performance measures compare to the existing methods.
Keywords: Packet reserving, Clogging control, Packet reservation in MANET, RAPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18083636 The Assessment of Interactions in Ratios Control Schemes for a Binary Distillation Column
Authors: R. Bendib, A. Khelassi
Abstract:
In this paper we will consider the most known ratios control schemes ((L/D, V/B),(L/D,V/F), Ryskamp-s, and (D/(L+D),V/B)) for binary distillation column and we compare them in the basis of interactions and disturbance propagation. The models for these configurations are deuced using mathematical transformations taking the energy balance structure (LV) as a base model. The dynamic relative magnitude criterion (DRMC) is used to assess the interactions. The results show that the introduction of ratios in controlling the column tends to minimize the degree of interactions between the loops.Keywords: Distillation, interaction, DRMC, configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15603635 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media
Authors: A. Mahdy
Abstract:
The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.
Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15383634 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21713633 Topology of Reverse Von-Kármán Vortex Street in the Wake of a Swimming Whale Shark
Authors: Arash Taheri
Abstract:
In this paper, effects of the ventral body planform of a swimming whale shark on the formation of ‘reverse von-Kármán vortex street’ behind the aquatic animal are studied using Fluid-Structure Interaction (FSI) approach. In this regard, incompressible Navier-Stokes equations around the whale shark’s body with a prescribed deflection dynamics are solved with the aid of Boundary Data Immersion Method (BDIM) and Implicit Large Eddy Simulation (ILES) turbulence treatment by WaterLily.jl solver; fully-written in Julia programming language. The whale shark flow simulations here are performed at high Reynolds number, i.e. 1.4 107 corresponding to the swimming of a 10 meter-whale shark at an average speed of 5 km/h. For comparison purposes, vortical flow generation behind a silky shark with a streamlined forehead eidonomy is also simulated at high Reynolds number, Re = 2 106, corresponding to the swimming of a 2 meter-silky shark at an average speed of 3.6 km/h. The results depict formation of distinct wake topologies behind the swimming sharks depending on the travelling wave oscillating amplitudes.
Keywords: Whale shark, vortex street, BDIM, FSI, functional eidonomy, bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12803632 Experimental Testbed to Compare 4G and 5G Industrial IoT Connections in Simulated Based Control System
Authors: Andrea Gelmini
Abstract:
This paper considers the advent of 5G and the use of it in a Based Control System (BCS), posing as a basic concept the question of what the real differences and practical improvements are compared to 4G. To this purpose, a testbed hardware simulator has been designed and built where identical machines with the same sensors and management systems will communicate with different radio access network connections. This allows an objective statistical comparison of performance on the real functioning and improvement of the infrastructure with the Industrial Internet of Things (IIoT) connected to it.
Keywords: 4G, 5G, BCS, eSIM, IIoT, SCADA, Testbed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3413631 Effect of Recycle Gas on Activity and Selectivity of Co-Ru/Al2O3 Catalyst in Fischer- Tropsch Synthesis
Authors: A.A.Rohani, B.Hatami, L.Jokar, F.khorasheh, A.A.Safekordi
Abstract:
In industrial scale of Gas to Liquid (GTL) process in Fischer-Tropsch (FT) synthesis, a part of reactor outlet gases such as CO2 and CH4 as side reaction products, is usually recycled. In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol. % of feed) to the feed stream. The effect of temperature and feed flow rate, are also inspected. The results show that low amounts of CO2 in the feed stream, doesn`t change the catalyst activity significantly but increasing the amount of CO2 (more than 10 vol. %) cause the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and doesn`t affect the catalyst performance. Increasing feed flow rate has negative effect on both CO conversion and heavy component selectivity. By raising the temperature, CO conversion will increase but there are more volatile components in the product. The effect of CO2 on the catalyst deactivation is also investigated carefully and a mechanism is suggested to explain the negative influence of CO2 on catalyst deactivation.Keywords: Alumina, Carbon dioxide, Cobalt catalyst, Conversion, Fischer Tropsch, Selectivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19763630 Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA
Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil
Abstract:
A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.
Keywords: Automatic Generation Control (AGC), Reheat, Proportional Integral (PI) controller, Dead Band, Genetic Algorithm(GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26583629 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16753628 Oleate Induces Apoptosis in 3T3-L1 Adipocytes
Authors: A. Rohana, A. M., Fadzilah Adibah, M. S. Muhammad Roji
Abstract:
Oleic acid (C18:1) play an important role in proliferation of fat cells. In this study, the effect of oleate on cells viability in 3T3-L1 cells (fat cells) was investigated. The 3T3-L1 cells were treated with various concentrations of oleate in the presence of 23 mM glucose. Oleate was added to adipogenic media (day 0) to investigate the influence of oleate on proliferation of postconfluent preadipocytes after 24 h induction. 0.1 mM oleate promoted cell division by increasing 33.9% number of cells from basal control in postconfluent preadipocytes. However, there were no significantly different in cells viability with control cells when oleate concentrations were increased up to 0.5 mM. When added to differentiated adipocytes (day 12) for 48 h, the number of cells decreased as oleate concentrations increased. 92.7% of cells lost demonstrated apoptosis and necrosis after 48 h with 0.5 mM oleate. The fluorochrome staining was examined under fluorescence microscopy using acridine orange and ethidium bromide double staining. Furthermore, the presence of high lactate (60.6% increased from basal control) released into plasma has shown the direct cytotoxicity of 0.5 mM oleate on adipocytes.Keywords: adipocytes, apoptosis, oleate, postconfluentpreadipocytes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25713627 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking
Authors: Shiuh-Jer Huang, Yu-Sheng Hsu
Abstract:
On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14643626 A Study on the Power Control of Wind Energy Conversion System
Authors: Mehdi Nafar, Mohammad Reza Mansouri
Abstract:
The present research presents a direct active and reactive power control (DPC) of a wind energy conversion system (WECS) for the maximum power point tracking (MPPT) based on a doubly fed induction generator (DFIG) connected to electric power grid. The control strategy of the Rotor Side Converter (RSC) is targeted in extracting a maximum of power under fluctuating wind speed. A fuzzy logic speed controller (FLC) has been used to ensure the MPPT. The Grid Side Converter is directed in a way to ensure sinusoidal current in the grid side and a smooth DC voltage. To reduce fluctuations, rotor torque and voltage use of multilevel inverters is a good way to remove the rotor harmony.Keywords: DFIG, power quality improvement, wind energy conversion system, WECS, fuzzy logic, RSC, GSC, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68343625 Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach
Authors: M. Ismail, Cao Yihua, Zhao Ming
Abstract:
Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.
Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36413624 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions
Authors: Saad Roustom, Hajo Ribberink
Abstract:
In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.
Keywords: Connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053623 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17133622 Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks
Authors: Manay E., Sahin B., Yilmaz M., Gelis K.
Abstract:
In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.
Keywords: Microchannel Heat Sink, Nanofluid, Heat transfer enhancement, pressure drop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35773621 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.
Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11623620 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems
Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo
Abstract:
The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.
Keywords: Adaptive control, digital fly-by-wire, oscillations suppression, PIO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7443619 Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model
Authors: A. F. Khadrawi
Abstract:
The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as increases. Also, the slip in the thermal boundary condition increases as decreases especially the early stage of time.Keywords: free convection, hyperbolic heat conduction, macroscopic heat conduction models in microchannel, porous media, vertical microchannel, microchannel thermal, hydrodynamic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19273618 PRENACEL: Development and Evaluation of an M-Health Strategy to Improve Prenatal Care in Brazil
Authors: E. M. Vieira, C. S. Vieira, L. P. Bonifácio, L. M. de Oliveira Ciabati, A. C. A. Franzon, F. S. Zaratini, J. A. C. Sanchez, M. S. Andrade, J. P. Dias de Souza
Abstract:
The quality of prenatal care is key to reduce maternal morbidity and mortality. Communication between the health service and users can stimulate prevention and care. M-health has been an important and low cost strategy to health education. The PRENACEL programme (prenatal in the cell phone) was developed. It consists of a programme of information via SMS from the 20th week of pregnancy up to 12th week after delivery. Messages were about prenatal care, birth, contraception and breastfeeding. Communication of the pregnant woman asking questions about their health was possible. The objective of this study was to evaluate the implementation of PRENACEL as a useful complement to the standard prenatal care. Twenty health clinics were selected and randomized by cluster, 10 as the intervention group and 10 as the control group. In the intervention group, women and their partner were invited to participate. The control group received the standard prenatal care. All women were interviewed in the immediate post-partum and in the 12th and 24th week post-partum. Most women were married, had more than 8 years of schooling and visit the clinic more than 6 times during prenatal care. The intervention group presented lowest percentage of higher economic participants (5.6%), less single mothers and no drug user. It also presented more prenatal care visits than the control group and it was less likely to present Severe Acute Maternal Mortality when compared to control group as well as higher percentage of partners (75.4%) was present at the birth compared to control group. Although the study is still being carried out, preliminary data are showing positive results of the compliance of women to prenatal care.
Keywords: Cellphone, health technology, prenatal care, prevention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14833617 The Optimized Cascade PI Controllers of the Generator Control Unit in the Aircraft Power System
Authors: W. Chayinthu, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
This paper presents the optimal controller design of the generator control unit in the aircraft power system. The adaptive tabu search technique is applied to tune the controller parameters until the best terminal output voltage of generator is achieved. The output response from the system with the controllers designed by the proposed technique is compared with those from the conventional method. The transient simulations using the commercial software package show that the controllers designed from the adaptive tabu search algorithm can provide the better output performance compared with the result from the classical method. The proposed design technique is very flexible and useful for electrical aircraft engineers.Keywords: Cascade PI controllers, DQ method, Adaptive tabusearch, Generator control unit, Aircraft power system, Modeling, Simulation, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26513616 A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times
Authors: Jinghao Sun, Guozhen Tan, Guangjian Hou
Abstract:
The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.Keywords: Chinese Postman Problem, Time Dependent, Integer Programming, Upper Bound Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27403615 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized POF via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the proposed modeling and design of a Robust Decentralized Periodic Output Feedback (RDPOF) control technique for the active vibration control of smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminum beam, thus giving rise to a multimodel of the smart structure system. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant eigen value retention and the method of Davison. RDPOF controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDPOF feedback gain and the magnitudes of the control input are observed and the performance of the proposed multimodel smart structure system with the controller is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control, Reduced order model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20283614 Mesotrione and Tembotrione Applied Alone or in Tank-Mix with Atrazine on Weed Control in Elephant Grass
Authors: Alexandre M. Brighenti
Abstract:
The experiment was carried out in Valença, Rio de Janeiro State, Brazil, to evaluate the selectivity and weed control of carotenoid biosynthesis inhibiting herbicides applied alone or in combination with atrazine in elephant grass crop. The treatments were as follows: mesotrione (0.072 and 0.144 kg ha-1 + 0.5% v/v mineral oil - Assist®), tembotrione (0.075 and 0.100 kg ha-1 + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha-1 + 0.5% v/v mineral oil - Assist®), atrazine + tembotrione (1.25 + 0.100 kg ha-1 + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha-1), atrazine + tembotrione (1.25 + 0.100 kg ha-1) and two controls (hoed and unhoed check). Two application rates of mesotrione with the addition of mineral oil or the tank mixture of atrazine plus mesotrione, with or without the addition of mineral oil, did not provide injuries capable to reduce elephant grass forage yield. Tembotrione was phytotoxic to elephant grass when applied with mineral oil. Atrazine and tembotrione in a tank-mix, with or without mineral oil, were also phytotoxic to elephant grass. All treatments provided satisfactory weed control.
Keywords: Forage, Napier grass, pasture, Pennisetum purpureum, weeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9043613 Auto-Selective Three Term Control of Position and Compliance of a Pneumatic Actuator
Authors: M. G. Papoutsidakis, G. Chamilothoris, A Pipe
Abstract:
Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. The paper presents a methodology for obtaining controllers that achieve high position accuracy and preserve the closed-loop characteristics over a broad operating range. Experimentation with a number of conventional (or "classical") three-term controllers shows that, as repeated operations accumulate, the characteristics of the pneumatic actuator change requiring frequent re-tuning of the controller parameters (PID gains). Furthermore, three-term controllers are found to perform poorly in recovering the closed-loop system after the application of load or other external disturbances. The key reason for these problems lies in the non-linear exchange of energy inside the cylinder relating, in particular, to the complex friction forces that develop on the piston-wall interface. In order to overcome this problem but still remain within the boundaries of classical control methods, we designed an auto selective classicaql controller so that the system performance would benefit from all three control gains (KP, Kd, Ki) according to system requirements and the characteristics of each type of controller. This challenging experimentation took place for consistent performance in the face of modelling imprecision and disturbances. In the work presented, a selective PID controller is presented for an experimental rig comprising an air cylinder driven by a variable-opening pneumatic valve and equipped with position and pressure sensors. The paper reports on tests carried out to investigate the capability of this specific controller to achieve consistent control performance under, repeated operations and other changes in operating conditions.
Keywords: Classical selective controller, long-termexperimentation, pneumatic actuator, position accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938