Search results for: Information tools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4801

Search results for: Information tools

2491 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel

Abstract:

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2490 Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems

Authors: Su-Yan Tang, Wei Zhang, Shan Mei, Yi-Fan Zhu

Abstract:

Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.

Keywords: air defense missile systems, network-centric, agent-based simulation, simulation framework, information superiority, decision superiority, operational advantages

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
2489 A Preliminary Literature Review of Digital Transformation Case Studies

Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec

Abstract:

While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.

Keywords: Digital strategy, digital technologies, digital transformation, literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6808
2488 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy

Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay

Abstract:

The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.

Keywords: Digital manufacturing, digital process model, quality function deployment, business strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
2487 An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-

Authors: Hiroki Satou, Kayoko Yamamoto

Abstract:

This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.

Keywords: Emissions Trading, Tokyo Cap and Trade Program, Carbon Dioxide (CO2), Global Warming, Geographic Information Systems (GIS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
2486 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
2485 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method

Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian

Abstract:

This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.

Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
2484 Pictorial Multimodal Analysis of Selected Paintings of Salvador Dali

Authors: Shaza Melies, Abeer Refky, Nihad Mansoor

Abstract:

Multimodality involves the communication between verbal and visual components in various discourses. A painting represents a form of communication between the artist and the viewer in terms of colors, shades, objects, and the title. This paper aims to present how multimodality can be used to decode the verbal and visual dimensions a painting holds. For that purpose, this study uses Kress and van Leeuwen’s theoretical framework of visual grammar for the analysis of the multimodal semiotic resources of selected paintings of Salvador Dali. This study investigates the visual decoding of the selected paintings of Salvador Dali and analyzing their social and political meanings using Kress and van Leeuwen’s framework of visual grammar. The paper attempts to answer the following questions: 1. How far can multimodality decode the verbal and non-verbal meanings of surrealistic art? 2. How can Kress and van Leeuwen’s theoretical framework of visual grammar be applied to analyze Dali’s paintings? 3. To what extent is Kress and van Leeuwen’s theoretical framework of visual grammar apt to deliver political and social messages of Dali? The paper reached the following findings: the framework’s descriptive tools (representational, interactive, and compositional meanings) can be used to analyze the paintings’ title and their visual elements. Social and political messages were delivered by appropriate usage of color, gesture, vectors, modality, and the way social actors were represented.

Keywords: Multimodality, multimodal analysis, paintings analysis, Salvador Dali, visual grammar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
2483 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
2482 An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending

Authors: Somya Poonaya, Chawalit Thinvongpituk, Umphisak Teeboonma

Abstract:

Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.

Keywords: Bending, Circular tube, Energy, Mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512
2481 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period

Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider

Abstract:

This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.

Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
2480 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: Analytics, digitization, industry 4.0, manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
2479 Evaluation of Dynamic Behavior a Machine Tool Spindle System through Modal and Unbalance Response Analysis

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

The spindle system is one of the most important components of machine tool. The dynamic properties of the spindle affect the machining productivity and quality of the work pieces. Thus, it is important and necessary to determine its dynamic characteristics of spindles in the design and development in order to avoid forced resonance. The finite element method (FEM) has been adopted in order to obtain the dynamic behavior of spindle system. For this reason, obtaining the Campbell diagrams and determining the critical speeds are very useful to evaluate the spindle system dynamics. The unbalance response of the system to the center of mass unbalance at the cutting tool is also calculated to investigate the dynamic behavior. In this paper, we used an ANSYS Parametric Design Language (APDL) program which based on finite element method has been implemented to make the full dynamic analysis and evaluation of the results. Results show that the calculated critical speeds are far from the operating speed range of the spindle, thus, the spindle would not experience resonance, and the maximum unbalance response at operating speed is still with acceptable limit. ANSYS Parametric Design Language (APDL) can be used by spindle designer as tools in order to increase the product quality, reducing cost, and time consuming in the design and development stages.

Keywords: ANSYS parametric design language (APDL), Campbell diagram, Critical speeds, Unbalance response, The Spindle system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
2478 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
2477 Endeavor in Management Process by Executive Dashboards: The Case of the Financial Directorship in Brazilian Navy

Authors: R. S. Quintal, J. L. Tesch Santos, M. D. Davis, E. C. de Santana, M. de F. Bandeira dos Santos

Abstract:

The objective is to identify the contributions from the introduction of the computerized system deal within the Accounting Department of Brazilian Navy Financial Directorship and its possible effects on the budgetary and financial harvest of Brazilian Navy. The relevance lies in the fact that the management process is responsible for the continuous improvement of organizational performance through higher levels of quality in their activities. Improvements in organizational processes have direct effects on crops cost, quality, reliability, flexibility and speed. The method of study of this research is the case study. The choice of case study attended, among other demands, a need for greater flexibility to study processes related to a computerized system. The sources of evidence were used literature, documentary and direct observation. Direct observation was made by monitoring the implementation of the computerized system in the Division of Management Analysis. The main findings of the study point to the fact that the computerized system may contribute significantly to the standardization of information. There was improvement of internal processes in the division of management analysis, made possible the consolidation of a standard management and performance analysis that contribute to global homogeneity in the treatment of information essential to the process of decision making. This study has limitations related to the fact the search result be subject exclusively to the case studied, and it is impossible to generalize to other organs of government.

Keywords: Process Management, Management Control, Business Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
2476 Hospital Waste Management Practices: A Case Study in Iran

Authors: M. Farzadkia, S. Jorfi

Abstract:

Hospital waste is a category of waste consisting of infectious and non-infectious waste, which pose environmental and health risks. Therefore, special planning and management is required, due to the potential hazards of them. The lack of valid and comprehensive information regarding the generation and management of hospital waste in Iran is one of the most important problems in this field. This research aimed to evaluate hospital waste management efficiency in Karaj city, Iran. The four greatest hospitals in Karaj city had been selected in this cross-sectional study. Site observations and interviews with employees were implemented. The data was gathered based on the hospital waste management questionnaire which was designed by World Health Organization for developing countries. Collected Data had been analyzed using SPSS software. The average of solid waste which was generated per bed was 2.78 kg, which included 90% of domestic waste and 10% of infectious waste. Based on the quantitative analysis of general and infectious waste in these hospitals, the highest contributors of general waste were consisting of food waste (37.39%), while textile (28.06%) were the highest contributors of the infectious waste. According to the information contained in the questionnaires, the main defects of waste management in these hospitals were; inadequate staff in waste management sector, poorly disinfection of solid waste containers and temporary storage locations, and a lack of proper infectious waste treatment. According to the results of this research, waste management in these hospitals were far from optimum conditions. In order to improve the existing conditions, mentioned problems must be solved quickly, and planning for continuous monitoring in the waste management field in these hospitals should be established.

Keywords: Waste management, hospital wastes, solid wastes, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
2475 Optimal Duty-Cycle Modulation Scheme for Analog-To-Digital Conversion Systems

Authors: G. Sonfack, J. Mbihi, B. Lonla Moffo

Abstract:

This paper presents an optimal duty-cycle modulation (ODCM) scheme for analog-to-digital conversion (ADC) systems. The overall ODCM-Based ADC problem is decoupled into optimal DCM and digital filtering sub-problems, while taking into account constraints of mutual design parameters between the two. Using a set of three lemmas and four morphological theorems, the ODCM sub-problem is modelled as a nonlinear cost function with nonlinear constraints. Then, a weighted least pth norm of the error between ideal and predicted frequency responses is used as a cost function for the digital filtering sub-problem. In addition, MATLAB fmincon and MATLAB iirlnorm tools are used as optimal DCM and least pth norm solvers respectively. Furthermore, the virtual simulation scheme of an overall prototyping ODCM-based ADC system is implemented and well tested with the help of Simulink tool according to relevant set of design data, i.e., 3 KHz of modulating bandwidth, 172 KHz of maximum modulation frequency and 25 MHZ of sampling frequency. Finally, the results obtained and presented show that the ODCM-based ADC achieves under 3 KHz of modulating bandwidth: 57 dBc of SINAD (signal-to-noise and distorsion), 58 dB of SFDR (Surpious free dynamic range) -80 dBc of THD (total harmonic distorsion), and 10 bits of minimum resolution. These performance levels appear to be a great challenge within the class of oversampling ADC topologies, with 2nd order IIR (infinite impulse response) decimation filter.

Keywords: Digital IIR filter, morphological lemmas and theorems, optimal DCM-based DAC, virtual simulation, weighted least pth norm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
2474 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique

Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem

Abstract:

This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.

Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
2473 Managing Iterations in Product Design and Development

Authors: K. Aravindhan, Trishit Bandyopadhyay, Mahesh Mehendale, Supriya Kumar De

Abstract:

The inherent iterative nature of product design and development poses significant challenge to reduce the product design and development time (PD). In order to shorten the time to market, organizations have adopted concurrent development where multiple specialized tasks and design activities are carried out in parallel. Iterative nature of work coupled with the overlap of activities can result in unpredictable time to completion and significant rework. Many of the products have missed the time to market window due to unanticipated or rather unplanned iteration and rework. The iterative and often overlapped processes introduce greater amounts of ambiguity in design and development, where the traditional methods and tools of project management provide less value. In this context, identifying critical metrics to understand the iteration probability is an open research area where significant contribution can be made given that iteration has been the key driver of cost and schedule risk in PD projects. Two important questions that the proposed study attempts to address are: Can we predict and identify the number of iterations in a product development flow? Can we provide managerial insights for a better control over iteration? The proposal introduces the concept of decision points and using this concept intends to develop metrics that can provide managerial insights into iteration predictability. By characterizing the product development flow as a network of decision points, the proposed research intends to delve further into iteration probability and attempts to provide more clarity.

Keywords: Decision Points, Iteration, Product Design, Rework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
2472 Choosing R-tree or Quadtree Spatial DataIndexing in One Oracle Spatial Database System to Make Faster Showing Geographical Map in Mobile Geographical Information System Technology

Authors: Maruto Masserie Sardadi, Mohd Shafry bin Mohd Rahim, Zahabidin Jupri, Daut bin Daman

Abstract:

The latest Geographic Information System (GIS) technology makes it possible to administer the spatial components of daily “business object," in the corporate database, and apply suitable geographic analysis efficiently in a desktop-focused application. We can use wireless internet technology for transfer process in spatial data from server to client or vice versa. However, the problem in wireless Internet is system bottlenecks that can make the process of transferring data not efficient. The reason is large amount of spatial data. Optimization in the process of transferring and retrieving data, however, is an essential issue that must be considered. Appropriate decision to choose between R-tree and Quadtree spatial data indexing method can optimize the process. With the rapid proliferation of these databases in the past decade, extensive research has been conducted on the design of efficient data structures to enable fast spatial searching. Commercial database vendors like Oracle have also started implementing these spatial indexing to cater to the large and diverse GIS. This paper focuses on the decisions to choose R-tree and quadtree spatial indexing using Oracle spatial database in mobile GIS application. From our research condition, the result of using Quadtree and R-tree spatial data indexing method in one single spatial database can save the time until 42.5%.

Keywords: Indexing, Mobile GIS, MapViewer, Oracle SpatialDatabase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4036
2471 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
2470 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

Authors: Wei Sun, Yan Dong

Abstract:

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Keywords: Robotics, computational thinking, programming, young children, flowcharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
2469 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
2468 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: Climate Change, Downscaling, GCM, RCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3377
2467 Ventilation Efficiency in the Subway Environment for the Indoor Air Quality

Authors: Kyung Jin Ryu, MakhsudaJuraeva, Sang-Hyun Jeongand Dong Joo Song

Abstract:

Clean air in subway station is important to passengers. The Platform Screen Doors (PSDs) can improve indoor air quality in the subway station; however the air quality in the subway tunnel is degraded. The subway tunnel has high CO2 concentration and indoor particulate matter (PM) value. The Indoor Air Quality (IAQ) level in subway environment degrades by increasing the frequency of the train operation and the number of the train. The ventilation systems of the subway tunnel need improvements to have better air-quality. Numerical analyses might be effective tools to analyze the performance of subway twin-track tunnel ventilation systems. An existing subway twin-track tunnel in the metropolitan Seoul subway system is chosen for the numerical simulations. The ANSYS CFX software is used for unsteady computations of the airflow inside the twin-track tunnel when the train moves. The airflow inside the tunnel is simulated when one train runs and two trains run at the same time in the tunnel. The piston-effect inside the tunnel is analyzed when all shafts function as the natural ventilation shaft. The supplied air through the shafts is mixed with the pollutant air in the tunnel. The pollutant air is exhausted by the mechanical ventilation shafts. The supplied and discharged airs are balanced when only one train runs in the twin-track tunnel. The pollutant air in the tunnel is high when two trains run simultaneously in opposite direction and all shafts functioned as the natural shaft cases when there are no electrical power supplies in the shafts. The remained pollutant air inside the tunnel enters into the station platform when the doors are opened.

Keywords: indoor air quality, subway twin-track tunnel, train-induced wind

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4343
2466 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: Composite material, crashworthiness, finite element analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
2465 Driver Readiness in Autonomous Vehicle Take-Overs

Authors: Abdurrahman Arslanyilmaz, Salman Al Matouq, Durmus V. Doner

Abstract:

Level 3 autonomous vehicles are able to take full responsibility over the control of the vehicle unless a system boundary is reached or a system failure occurs, in which case, the driver is expected to take-over the control of the vehicle. While this happens, the driver is often not aware of the traffic situation or is engaged in a secondary task. Factors affecting the duration and quality of take-overs in these situations have included secondary task type and nature, traffic density, take-over request (TOR) time, and TOR warning type and modality. However, to the best of the authors’ knowledge, no prior study examined time buffer for TORs when a system failure occurs immediately before intersections. The first objective of this study is to investigate the effect of time buffer (3 and 7 seconds) on the duration and quality of take-overs when a system failure occurs just prior to intersections. In addition, eye-tracking has become one of the most popular methods to report what individuals view, in what order, for how long, and how often, and it has been utilized in driving simulations with various objectives. However, to the extent of authors’ knowledge, none has compared drivers’ eye gaze behavior in the two different time buffers in order to examine drivers’ attention and comprehension of salient information. The second objective is to understand the driver’s attentional focus on comprehension of salient traffic-related information presented on different parts of the dashboard and on the roads.

Keywords: Autonomous vehicles, driving simulation, eye gaze, attention, comprehension, take-over duration, take-over quality, time buffer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
2464 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina M. R. Caridade, Ana Rita F. Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28
2463 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2462 The Use of Knowledge Management Systems and ICT Service Desk Management to Minimize the Digital Divide Experienced in the Museum Sector

Authors: Ruel A. Welch

Abstract:

Since the introduction of ServiceNow, the UK’s Science Museum Group’s (SMG) ICT service desk portal, there has not been an analysis of the tools available to SMG staff for Just-in-time knowledge acquisition (Knowledge Management Systems) and reporting ICT incidents with a focus on an aspect of professional identity namely, gender. Therefore, it is important for SMG to investigate the apparent disparities so that solutions can be derived to minimize this digital divide if one exists. This study is conducted in the milieu of UK museums, galleries, arts, academic, charitable, and cultural heritage sector. It is acknowledged at SMG that there are challenges with keeping up with an ever-changing digital landscape. Subsequently, this entails the rapid upskilling of staff and developing an infrastructure that supports just-in-time technological knowledge acquisition and reporting technology related issues. This problem was addressed by analysing ServiceNow ICT incident reports and reports from knowledge articles from a six-month period from February to July. This study found a statistically significant relationship between gender and reporting an ICT incident. There is also a significant relationship between gender and the priority level of ICT incident. Interestingly, there is no statistically significant relationship between gender and reading knowledge articles. Additionally, there is no statistically significant relationship between gender and reporting an ICT incident related to the knowledge article that was read by staff. The knowledge acquired from this study is useful to service desk management practice as it will help to inform the creation of future knowledge articles and ICT incident reporting processes.

Keywords: digital divide, ICT service desk practice, knowledge management systems, workplace learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642