Search results for: thermal simulation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4543

Search results for: thermal simulation.

2293 3D Definition for Human Smiles

Authors: Shyue-Ran Li, Kuohsiang Chen

Abstract:

The study explored varied types of human smiles and extracted most of the key factors affecting the smiles. These key factors then were converted into a set of control points which could serve to satisfy the needs for creation of facial expression for 3D animators and be further applied to the face simulation for robots in the future. First, hundreds of human smile pictures were collected and analyzed to identify the key factors for face expression. Then, the factors were converted into a set of control points and sizing parameters calculated proportionally. Finally, two different faces were constructed for validating the parameters via the process of simulating smiles of the same type as the original one.

Keywords: 3D animation, facial expression, numerical, robot, smile parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
2292 Temperature Effect on the Solid-State Synthesis of Dehydrated Zinc Borates

Authors: N. Tugrul, N. Baran Acarali, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Turkey has 72 % of total world boron reserves on the basis of B2O3.Borates that is a refined form of boron minerals have a wide range of applications. Zinc borates can be used as multifunctional synergistic additives. The most important properties are low solubility in water and high dehydration temperature. Zinc borates dehydrate above 290°C and anhydrous zinc borate has thermal resistance about 400°C. Zinc borates can be synthesized using several methods such as hydrothermal and solid-state processes. In this study, the solid-state method was applied between 500 and 800°C using the starting materials of ZnO and H3BO3 with 1:4 mole ratio. The reaction time was determined as 4 hours after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by XRay Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectrometer. As a result the form of ZnB4O7 was synthesized with the highest crystal score at 800°C.

Keywords: Raman, solid-state method, zinc borate, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
2291 Effect of UV Radiation to Change the Properties of the Composite PA+GF

Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz

Abstract:

The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, microorganisms and other atmospheric factors.

Keywords: Composites with glass fibres, mechanical properties, polyamides, UV degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
2290 Conversion of Modified Commercial Polyacrylonitrile Fibers to Carbon Fibers

Authors: R. Eslami Farsani, A. Shokuhfar, A. Sedghi

Abstract:

Carbon fibers are fabricated from different materials, such as special polyacrylonitrile (PAN) fibers, rayon fibers and pitch. Among these three groups of materials, PAN fibers are the most widely used precursor for the manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers includes two steps; oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Due to the high price of raw materials (special PAN fibers), carbon fibers are still expensive. In the present work the main goal is making carbon fibers from low price commercial PAN fibers with modified chemical compositions. The results show that in case of conducting completes stabilization process, it is possible to produce carbon fibers with desirable tensile strength from this type of PAN fibers. To this matter, thermal characteristics of commercial PAN fibers were investigated and based upon the obtained results, with some changes in conventional procedure of stabilization in terms of temperature and time variables; the desirable conditions of complete stabilization is achieved.

Keywords: Modified Commercial PAN Fibers, Stabilization, Carbonization, Carbon Fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
2289 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
2288 Extended Dynamic Source Routing Protocol for the Non Co-Operating Nodes in Mobile Adhoc Networks

Authors: V. Narasimha Raghavan, T. Peer Meera Labbai, N. Bhalaji, Suvitha Kesavan

Abstract:

In this paper, a new approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate in an ad hoc environment. The extended DSR protocol is tested under different scenarios by varying the number of malicious nodes and node moving speed. It is also tested varying the number of nodes in simulation used. The result indicates the achieved throughput by extended DSR is greater than the standard DSR and indicates the percentage of malicious drops over total drops are less in the case of extended DSR than the standard DSR.

Keywords: Mobile Adhoc Networks, DSR, Grudger protocol, Nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
2287 Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider

Authors: Liu Jian-xia, Hou Zhong-xi, Chen Xiao-qing

Abstract:

The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition.

Keywords: Aerodynamic, CFD, Thermodynamic, Waverider

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
2286 Per Flow Packet Scheduling Scheme to Improve the End-to-End Fairness in Mobile Ad Hoc Wireless Network

Authors: K. Sasikala, R. S. D Wahidabanu

Abstract:

Various fairness models and criteria proposed by academia and industries for wired networks can be applied for ad hoc wireless network. The end-to-end fairness in an ad hoc wireless network is a challenging task compared to wired networks, which has not been addressed effectively. Most of the traffic in an ad hoc network are transport layer flows and thus the fairness of transport layer flows has attracted the interest of the researchers. The factors such as MAC protocol, routing protocol, the length of a route, buffer size, active queue management algorithm and the congestion control algorithms affects the fairness of transport layer flows. In this paper, we have considered the rate of data transmission, the queue management and packet scheduling technique. The ad hoc network is dynamic in nature due to various parameters such as transmission of control packets, multihop nature of forwarding packets, changes in source and destination nodes, changes in the routing path influences determining throughput and fairness among the concurrent flows. In addition, the effect of interaction between the protocol in the data link and transport layers has also plays a role in determining the rate of the data transmission. We maintain queue for each flow and the delay information of each flow is maintained accordingly. The pre-processing of flow is done up to the network layer only. The source and destination address information is used for separating the flow and the transport layer information is not used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and the transport layer information is used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on not mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and MC-MLAS and the performance of the proposed approach is encouraging.

Keywords: ATP, End-to-End fairness, FSM, MAC, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
2285 Low-Cost Pre-Treatment of Pharmaceutical Wastewater

Authors: A. Abu-Safa, S. Abu-Salah, M. Mosa, S. Gharaibeh

Abstract:

Pharmaceutical industries and effluents of sewage treatment plants are the main sources of residual pharmaceuticals in water resources. These emergent pollutants may adversely impact the biophysical environment. Pharmaceutical industries often generate wastewater that changes in characteristics and quantity depending on the used manufacturing processes. Carbamazepine (CBZ), {5Hdibenzo [b,f]azepine-5-carboxamide, (C15H12N2O)}, is a significant non-biodegradable pharmaceutical contaminant in the Jordanian pharmaceutical wastewater, which is not removed by the activated sludge processes in treatment plants. Activated carbon may potentially remove that pollutant from effluents, but the high cost involved suggests that more attention should be given to the potential use of low-cost materials in order to reduce cost and environmental contamination. Powders of Jordanian non-metallic raw materials namely, Azraq Bentonite (AB), Kaolinite (K), and Zeolite (Zeo) were activated (acid and thermal treatment) and evaluated by removing CBZ. The results of batch and column techniques experiments showed around 46% and 67% removal of CBZ respectively.

Keywords: Azraq bentonite, carbamazepine, pharmaceutical wastewater, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
2284 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: Repairable models, imperfect, availability, exponential distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
2283 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.

Keywords: Actuator Dynamics, Backstepping, Discrete-Time Controller, Lyapunov Function, Wheeled Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
2282 Negative Temperature Dependence of a Gravity - A Reality

Authors: Alexander L. Dmitriev, Sophia A. Bulgakova

Abstract:

Temperature dependence of force of gravitation is one of the fundamental problems of physics. This problem has got special value in connection with that the general theory of relativity, supposing the weakest positive influence of a body temperature on its weight, actually rejects an opportunity of measurement of negative influence of temperature on gravity in laboratory conditions. Really, the recognition of negative temperature dependence of gravitation, for example, means basic impossibility of achievement of a singularity («a black hole») at a gravitational collapse. Laboratory experiments with exact weighing the heated up metal samples, indicating negative influence temperatures of bodies on their physical weight are described. Influence of mistakes of measurements is analyzed. Calculations of distribution of temperature in volume of the bar, agreed with experimental data of time dependence of weight of samples are executed. The physical substantiation of negative temperature dependence of weight of the bodies, based on correlation of acceleration at thermal movement of micro-particles of a body and its absolute temperature, are given.

Keywords: Gravitation, temperature, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
2281 Reciprocating Compressor Optimum Design and Manufacturing with Respect to Performance, Reliability and Cost

Authors: A. Almasi

Abstract:

Reciprocating compressors are flexible to handle wide capacity and condition swings, offer a very efficient method of compressing almost any gas mixture in wide range of pressure, can generate high head independent of density, and have numerous applications and wide power ratings. These make them vital component in various units of industrial plants. In this paper optimum reciprocating compressor configuration regarding interstage pressures, low suction pressure, non-lubricated cylinder, speed of machine, capacity control system, compressor valve, lubrication system, piston rod coating, cylinder liner material, barring device, pressure drops, rod load, pin reversal, discharge temperature, cylinder coolant system, performance, flow, coupling, special tools, condition monitoring (including vibration, thermal and rod drop monitoring), commercial points, delivery and acoustic conditions are presented.

Keywords: Design, optimum, reciprocating compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9839
2280 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
2279 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria

Authors: T. Tahri, A. Bettahar, M. Douani

Abstract:

In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.

Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027
2278 Analysis of Self Excited Induction Generator using Particle Swarm Optimization

Authors: Hassan E. A. Ibrahim, Mohamed F. Serag

Abstract:

In this paper, Novel method, Particle Swarm Optimization (PSO) algorithm, based technique is proposed to estimate and analyze the steady state performance of self-excited induction generator (SEIG). In this novel method the tedious job of deriving the complex coefficients of a polynomial equation and solving it, as in previous methods, is not required. By comparing the simulation results obtained by the proposed method with those obtained by the well known mathematical methods, a good agreement between these results is obtained. The comparison validates the effectiveness of the proposed technique.

Keywords: Evolution theory, MATLAB, optimization, PSO, SEIG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
2277 A Cost-Effective Design and Analysis of Full Bridge LLC Resonant Converter

Authors: Kaibalya Prasad Panda, Sreyasee Rout

Abstract:

LLC (Inductor-inductor-capacitor) resonant converter has lots of advantages over other type of resonant converters which include high efficiency, more reliable and have high power density. This paper presents the design and analysis of a full bridge LLC resonant converter. In addition to the operational principle, the ZVS and ZCS conditions are also explained with the DC characteristics. Simulation of the LLC resonant converter is performed in MATLAB/ Simulink and the practical prototype setup is analyzed in Proteus software. The result is verified through analysis and design of a low cost, 200 watt prototype converter.

Keywords: LLC, Proteus, Resonant converter ZCS, ZVS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
2276 A Cooperative Space-Time Transmission Scheme Based On Symbol Combinations

Authors: Keunhong Chae, Seokho Yoon

Abstract:

This paper proposes a cooperative Alamouti space time transmission scheme with low relay complexity for the cooperative communication systems. In the proposed scheme, the source node combines the data symbols to construct the Alamouti-coded form at the destination node, while the conventional scheme performs the corresponding operations at the relay nodes. In simulation results, it is shown that the proposed scheme achieves the second order cooperative diversity while maintaining the same bit error rate (BER) performance as that of the conventional scheme.

Keywords: Space-time transmission, cooperative communication system, MIMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2275 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber

Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria

Abstract:

Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.

Keywords: EFB, liquefaction, phenol formaldehyde, lignin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
2274 Real Time Control Learning Game - Speed Race by Learning at the Wheel - Development of Data Acquisition System

Authors: Κonstantinos Kalovrektis, Chryssanthi Palazi

Abstract:

Schools today face ever-increasing demands in their attempts to ensure that students are well equipped to enter the workforce and navigate a complex world. Research indicates that computer technology can help support learning, implementation of various experiments or learning games, and that it is especially useful in developing the higher-order skills of critical thinking, observation, comprehension, implementation, comparison, analysis and active attention to activities such as research, field work, simulations and scientific inquiry. The ICT in education supports the learning procedure by enabling it to be more flexible and effective, create a rich and attractive training environment and equip the students with knowledge and potential useful for the competitive social environment in which they live. This paper presents the design, the development, and the results of the evaluation analysis of an interactive educational game which using real electric vehicles - toys (material) on a toy race track. When the game starts each student selects a specific vehicle toy. Then students are answering questionnaires in the computer. The vehicles' speed is related to the percentage of right answers in a multiple choice questionnaire (software). Every question has its own significant value depending of the different level of questionnaire. Via the developed software, each right or wrong answers in questionnaire increase or decrease the real time speed of their vehicle toys. Moreover the rate of vehicle's speed increase or decrease depends on the difficulty level of each question. The aim of the work is to attract the student’s interest in a learning process and also to improve their scores. The developed real time game was tested using independent populations of students of age groups: 8-10, 11-14, 15-18 years. Standard educational and statistical analysis tools were used for the evaluation analysis of the game. Results reveal that students using the developed real time control game scored much higher (60%) than students using a traditional simulation game on the same questionnaire. Results further indicate that student's interest in repeating the developed real time control gaming was far higher (70%) than the interest of students using a traditional simulation game.

Keywords: Real time game, sensor, learning games, LabVIEW

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
2273 Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

Authors: Hossein Shokouhmand , Koohyar Vahidkhah, Mohammad A. Esmaeili

Abstract:

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Keywords: dimple, heat transfer enhancement, Numerical, optimum value, turbulent air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
2272 Smith Predictor Design by CDM for Temperature Control System

Authors: Roengruen P., Tipsuwanporn V., Puawade P., Numsomran A.

Abstract:

Smith Predictor control is theoretically a good solution to the problem of controlling the time delay systems. However, it seldom gets use because it is almost impossible to find out a precise mathematical model of the practical system and very sensitive to uncertain system with variable time-delay. In this paper is concerned with a design method of smith predictor for temperature control system by Coefficient Diagram Method (CDM). The simulation results show that the control system with smith predictor design by CDM is stable and robust whilst giving the desired time domain system performance.

Keywords: CDM, Smith Predictor, temperature process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
2271 Ignition Time Delay in Swirling Supersonic Flow Combustion

Authors: A. M. Tahsini

Abstract:

Supersonic hydrogen-air cylindrical mixing layer is numerically analyzed to investigate the effect of inlet swirl on ignition time delay in scramjets. Combustion is treated using detail chemical kinetics. One-equation turbulence model of Spalart and Allmaras is chosen to study the problem and advection upstream splitting method is used as computational scheme. The results show that swirling both fuel and oxidizer streams may drastically decrease the ignition distance in supersonic combustion, unlike using the swirl just in fuel stream which has no helpful effect.

Keywords: Ignition delay, Supersonic combustion, Swirl, Numerical simulation, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
2270 A New Approach for Controlling Overhead Traveling Crane Using Rough Controller

Authors: Mazin Z. Othman

Abstract:

This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.

Keywords: Accuracy measure, Fuzzy Logic Controller (FLC), Overhead Traveling Crane (OTC), Rough Set Theory (RST), Roughness measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2269 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: Amplifier, DVB-T, LDMOS, MOSFETS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
2268 Kalman Filter Based Adaptive Reduction of Motion Artifact from Photoplethysmographic Signal

Authors: S. Seyedtabaii, L. Seyedtabaii

Abstract:

Artifact free photoplethysmographic (PPG) signals are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of Sp02. This paper presents a study on using Kalman Filter in an innovative way by modeling both the Artillery Blood Pressure (ABP) and the unwanted signal, additive motion artifact, to reduce motion artifacts from corrupted PPG signals. Simulation results show acceptable performance regarding LMS and variable step LMS, thus establishing the efficacy of the proposed method.

Keywords: Kalman filter, Motion artifact, PPG, Photoplethysmography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4242
2267 Simulating Gradient Contour and Mesh of a Scalar Field

Authors: Usman Ali Khan, Bismah Tariq, Khalida Raza, Saima Malik, Aoun Muhammad

Abstract:

This research paper is based upon the simulation of gradient of mathematical functions and scalar fields using MATLAB. Scalar fields, their gradient, contours and mesh/surfaces are simulated using different related MATLAB tools and commands for convenient presentation and understanding. Different mathematical functions and scalar fields are examined here by taking their gradient, visualizing results in 3D with different color shadings and using other necessary relevant commands. In this way the outputs of required functions help us to analyze and understand in a better way as compared to just theoretical study of gradient.

Keywords: MATLAB, Gradient, Contour, Scalar Field, Mesh

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3415
2266 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk

Authors: Paras Ram, Vikas Kumar

Abstract:

An attempt has been made to study the effect of rotation on incompressible, electrically non-conducting ferrofluid in porous medium on Axi-symmetric steady flow over a rotating disk excluding thermal effects. Here, we solved the boundary layer equations with boundary conditions using Neuringer-Rosensweig model considering the z-axis as the axis of rotation. The non linear boundary layer equations involved in the problem are transformed to the non linear coupled ordinary differential equations by Karman's transformation and solved by power series approximations. Besides numerically calculating the velocity components and pressure for different values of porosity parameter with the variation of Karman's parameter we have also calculated the displacement thickness of boundary layer, the total volume flowing outward the z-axis and angle between wall and ferrofluid. The results for all above variables are obtained numerically and discussed graphically.

Keywords: Ferrofluid, magnetic field porous medium, rotating disk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
2265 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: Exergy, pinch, combined cycle power plant, CCPP, supercritical steam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
2264 Analysis of Boiling in Rectangular Micro Channel Heat Sink

Authors: Ahmed Jassim Shkarah, Mohd Yusoff Bin Sulaiman, Md Razali bin Hj Ayob

Abstract:

A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing Tow-phase flows. The sole purpose for analyzing two phase flow heat transfer in rectangular micro channel is to pin point what are the different factors affecting this phenomenon. Different methods and techniques have been undertaken to analyze the equations arising constituting the flow of heat from gas phase to liquid phase and vice versa.Different models of micro channels have been identified and analyzed. How the geometry of micro channels affects their activity i.e. of circular and non-circular geometry has also been reviewed. To the study the results average Nusselt no plotted against the Reynolds no has been taken into consideration to study average heat exchange in micro channels against applied heat flux. High heat fluxes up to 140 W/cm2 were applied to investigate micro-channel thermal characteristics.

Keywords: Tow Phase flow, Micro channel, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944