Search results for: Support vector data description
7150 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory
Authors: Soon-Hyun Park, Takami Matsuo
Abstract:
This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18737149 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland
Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi
Abstract:
Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.
Keywords: Ecosystem, business model, personal data, preventive healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11407148 Displaying of GnRH Peptides on Bacteriophage T7 and Its Immunogenicity in Mice Model
Authors: Hai Xu, Yiwei Wang, Xi Bao, Bihua Deng, Pengcheng Li, Yu Lu
Abstract:
T7 phage could be used as a perfect vector for peptides expression and haptens presentation. T7-3GnRH recombinant phage was constructed by inserting three copies of Gonadotrophin Releasing Hormone (GnRH) gene into the multiple cloning site of T7 Select 415-1b phage genome. The positive T7-3GnRH phage was selected by using polymerase chain reaction amplification, and the p10B-3GnRH fusion protein was verified by SDS-PAGE and Western-blotting assay. T7-3GnRH vaccine was made and immunized with 1010 pfu in 0.2 ml per dose in mice. Blood samples were collected at an interval in weeks, and anti-GnRH antibody and testosterone concentrations were detected by ELISA and radioimmunoassay, respectively. The results show that T7-3GnRH phage particles confer a high immunogenicity to the GnRH-derived epitope. Moreover, the T7-3GnRH vaccine induced higher level of anti-GnRH antibody than ImproVac®. However, the testosterone concentrations in both immunized groups were at a similar level, and the testis developments were significantly inhibited compared to controls. These findings demonstrated that the anti-GnRH antibody could neutralize the endogenous GnRH to down regulate testosterone level and limit testis development, highlighting the potential value of T7-3GnRH in the immunocastration vaccine research.
Keywords: Gonadotrophin releasing hormone, GnRH, immunocastration, T7 phage, phage vaccine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11097147 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10277146 Beam and Diffuse Solar Energy in Zarqa City
Authors: Ali M. Jawarneh
Abstract:
Beam and diffuse radiation data are extracted analytically from previous measured data on a horizontal surface in Zarqa city. Moreover, radiation data on a tilted surfaces with different slopes have been derived and analyzed. These data are consisting of of beam contribution, diffuse contribution, and ground reflected contribution radiation. Hourly radiation data for horizontal surface possess the highest radiation values on June, and then the values decay as the slope increases and the sharp decreasing happened for vertical surface. The beam radiation on a horizontal surface owns the highest values comparing to diffuse radiation for all days of June. The total daily radiation on the tilted surface decreases with slopes. The beam radiation data also decays with slopes especially for vertical surface. Diffuse radiation slightly decreases with slopes with sharp decreases for vertical surface. The groundreflected radiation grows with slopes especially for vertical surface. It-s clear that in June the highest harvesting of solar energy occurred for horizontal surface, then the harvesting decreases as the slope increases.
Keywords: Beam and Diffuse Radiation, Zarqa City
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15507145 An Application of the Data Mining Methods with Decision Rule
Authors: Xun Ge, Jianhua Gong
Abstract:
ankings for output of Chinese main agricultural commodity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008 have been released in United Nations FAO Database. Unfortunately, where the ranking of output of Chinese cotton lint in the world for 2008 was missed. This paper uses sequential data mining methods with decision rules filling this gap. This new data mining method will be help to give a further improvement for United Nations FAO Database.
Keywords: Ranking, output of the main agricultural commodity, gross domestic product, decision table, information system, data mining, decision rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17107144 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: LiDAR, real-time system, clustering, tracking, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46707143 A Review on the Importance of Nursing Approaches in Nutrition of Children with Cancer
Authors: Ş. Çiftcioğlu, E. Efe
Abstract:
In recent years, cancer has been at the top of diseases that cause death in children. Adequate and balanced nutrition plays an important role in the treatment of cancer. Cancer and cancer treatment is affecting food intake, absorption and metabolism, causing nutritional disorders. Appropriate nutrition is very important for the cancerous child to feel well before, during and after the treatment. There are various difficulties in feeding children with cancer. These are the cancer-related factors. Other factors are environmental and behavioral. As health professionals who spend more time with children in the hospital, nurses should be able to support the children on nutrition and help them to have balanced nutrition. This study aimed to evaluate the importance of nursing approaches in the nutrition of children with cancer. This article is planned as a review article by searching the literature on this field. Anorexia may develop due to psychogenic causes or chemotherapeutic agents or accompanying infections and nutrient uptake may be reduced. In addition, stomatitis, mucositis, taste and odor changes in the mouth, the feeling of nausea, vomiting and diarrhea can also reduce oral intake and result in significant losses in the energy deficit. In assessing the nutritional status of children with cancer, determining weight loss and good nutrition is essential anamnesis of a child. Some anthropometric measurements and biochemical tests should be used to evaluate the nutrition of the child. The nutritional status of pediatric cancer patients has been studied for a long time and malnutrition, in particular under nutrition, in this population has long been recognized. Yet, its management remains variable with many malnourished children going unrecognized and consequently untreated. Nutritional support is important to pediatric cancer patients and should be integrated into the overall treatment of these children.
Keywords: Cancer treatment, children, complication, nutrition, nursing approaches.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16067142 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.
Keywords: Deep learning network, smart metering, water end use, water-energy data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13637141 Watermark Bit Rate in Diverse Signal Domains
Authors: Nedeljko Cvejic, Tapio Sepp
Abstract:
A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.
Keywords: Digital watermarking, information hiding, audio watermarking, watermark data rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16287140 Concurrent Access to Complex Entities
Authors: Cosmin Rablou
Abstract:
In this paper we present a way of controlling the concurrent access to data in a distributed application using the Pessimistic Offline Lock design pattern. In our case, the application processes a complex entity, which contains in a hierarchical structure different other entities (objects). It will be shown how the complex entity and the contained entities must be locked in order to control the concurrent access to data.Keywords: Object-oriented programming, Pessimistic Lock, Design pattern, Concurrent access to data, Processing complex entities
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13117139 Privacy in New Mobile Payment Protocol
Authors: Tan Soo Fun, Leau Yu Beng, Rozaini Roslan, Habeeb Saleh Habeeb
Abstract:
The increasing development of wireless networks and the widespread popularity of handheld devices such as Personal Digital Assistants (PDAs), mobile phones and wireless tablets represents an incredible opportunity to enable mobile devices as a universal payment method, involving daily financial transactions. Unfortunately, some issues hampering the widespread acceptance of mobile payment such as accountability properties, privacy protection, limitation of wireless network and mobile device. Recently, many public-key cryptography based mobile payment protocol have been proposed. However, limited capabilities of mobile devices and wireless networks make these protocols are unsuitable for mobile network. Moreover, these protocols were designed to preserve traditional flow of payment data, which is vulnerable to attack and increase the user-s risk. In this paper, we propose a private mobile payment protocol which based on client centric model and by employing symmetric key operations. The proposed mobile payment protocol not only minimizes the computational operations and communication passes between the engaging parties, but also achieves a completely privacy protection for the payer. The future work will concentrate on improving the verification solution to support mobile user authentication and authorization for mobile payment transactions.Keywords: Mobile Network Operator, Mobile payment protocol, Privacy, Symmetric key.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21337138 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20937137 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon
Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba
Abstract:
In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.
Keywords: Population, road network, statistical correlations, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9967136 Risk-Management by Numerical Pattern Analysis in Data-Mining
Authors: M. Kargar, R. Mirmiran, F. Fartash, T. Saderi
Abstract:
In this paper a new method is suggested for risk management by the numerical patterns in data-mining. These patterns are designed using probability rules in decision trees and are cared to be valid, novel, useful and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. The patterns are analyzed through the produced matrices and some results are pointed out. By using the suggested method the direction of the functionality route in the systems can be controlled and best planning for special objectives be done.Keywords: Analysis, Data-mining, Pattern, Risk Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12717135 Wind Speed Data Analysis using Wavelet Transform
Authors: S. Avdakovic, A. Lukac, A. Nuhanovic, M. Music
Abstract:
Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.Keywords: Wind potential, Wind speed data, Wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26327134 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: Fingerprint, template protection, bio-cryptography, minutiae protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8427133 SIMGraph: Simplifying Contig Graph to Improve de Novo Genome Assembly Using Next-generation Sequencing Data
Authors: Chien-Ju Li, Chun-Hui Yu, Chi-Chuan Hwang, Tsunglin Liu , Darby Tien-Hao Chang
Abstract:
De novo genome assembly is always fragmented. Assembly fragmentation is more serious using the popular next generation sequencing (NGS) data because NGS sequences are shorter than the traditional Sanger sequences. As the data throughput of NGS is high, the fragmentations in assemblies are usually not the result of missing data. On the contrary, the assembled sequences, called contigs, are often connected to more than one other contigs in a complicated manner, leading to the fragmentations. False connections in such complicated connections between contigs, named a contig graph, are inevitable because of repeats and sequencing/assembly errors. Simplifying a contig graph by removing false connections directly improves genome assembly. In this work, we have developed a tool, SIMGraph, to resolve ambiguous connections between contigs using NGS data. Applying SIMGraph to the assembly of a fungus and a fish genome, we resolved 27.6% and 60.3% ambiguous contig connections, respectively. These results can reduce the experimental efforts in resolving contig connections.
Keywords: Contig graph, NGS, de novo assembly, scaffold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17347132 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application
Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil
Abstract:
In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.
Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21147131 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.
Keywords: Data envelopment analysis, Dynamic DEA, Piecewise linear inputs, Piecewise linear outputs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6567130 Data Mining Determination of Sunlight Average Input for Solar Power Plant
Authors: Fl. Loury, P. Sablonière, C. Lamoureux, G. Magnier, Th. Gutierrez
Abstract:
A method is proposed to extract faithful representative patterns from data set of observations when they are suffering from non-negligible fluctuations. Supposing time interval between measurements to be extremely small compared to observation time, it consists in defining first a subset of intermediate time intervals characterizing coherent behavior. Data projection on these intervals gives a set of curves out of which an ideally “perfect” one is constructed by taking the sup limit of them. Then comparison with average real curve in corresponding interval gives an efficiency parameter expressing the degradation consecutive to fluctuation effect. The method is applied to sunlight data collected in a specific place, where ideal sunlight is the one resulting from direct exposure at location latitude over the year, and efficiency is resulting from action of meteorological parameters, mainly cloudiness, at different periods of the year. The extracted information already gives interesting element of decision, before being used for analysis of plant control.
Keywords: Base Input Reconstruction, Data Mining, Efficiency Factor, Information Pattern Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15287129 Inefficiency of Data Storing in Physical Memory
Authors: Kamaruddin Malik Mohamad, Sapiee Haji Jamel, Mustafa Mat Deris
Abstract:
Memory forensic is important in digital investigation. The forensic is based on the data stored in physical memory that involve memory management and processing time. However, the current forensic tools do not consider the efficiency in terms of storage management and the processing time. This paper shows the high redundancy of data found in the physical memory that cause inefficiency in processing time and memory management. The experiment is done using Borland C compiler on Windows XP with 512 MB of physical memory.Keywords: Digital Evidence, Memory Forensics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20197128 Development of an Avionics System for Flight Data Collection of an UAV Helicopter
Authors: Nikhil Ramaswamy, S.N.Omkar, Kashyap.H.Nathwani, Anil.M.Vanjare
Abstract:
In this present work, the development of an avionics system for flight data collection of a Raptor 30 V2 is carried out. For the data acquisition both onground and onboard avionics systems are developed for testing of a small-scale Unmanned Aerial Vehicle (UAV) helicopter. The onboard avionics record the helicopter state outputs namely accelerations, angular rates and Euler angles, in real time, and the on ground avionics system record the inputs given to the radio controlled helicopter through a transmitter, in real time. The avionic systems are designed and developed taking into consideration low weight, small size, anti-vibration, low power consumption, and easy interfacing. To mitigate the medium frequency vibrations embedded on the UAV helicopter during flight, a damper is designed and its performance is evaluated. A number of flight tests are carried out and the data obtained is then analyzed for accuracy and repeatability and conclusions are inferred.Keywords: Data collection, Flight Testing, Onground and Onboard Avionics, UAV helicopter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26427127 The Research of Fuzzy Classification Rules Applied to CRM
Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang
Abstract:
In the era of great competition, understanding and satisfying customers- requirements are the critical tasks for a company to make a profits. Customer relationship management (CRM) thus becomes an important business issue at present. With the help of the data mining techniques, the manager can explore and analyze from a large quantity of data to discover meaningful patterns and rules. Among all methods, well-known association rule is most commonly seen. This paper is based on Apriori algorithm and uses genetic algorithms combining a data mining method to discover fuzzy classification rules. The mined results can be applied in CRM to help decision marker make correct business decisions for marketing strategies.Keywords: Customer relationship management (CRM), Data mining, Apriori algorithm, Genetic algorithm, Fuzzy classification rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16617126 Toward Delegated Democracy: Vote by Yourself, or Trust Your Network
Authors: Hiroshi Yamakawa, Michiko Yoshida, Motohiro Tsuchiya
Abstract:
The recent development of Information and Communication Technology (ICT) enables new ways of "democratic" decision-making such as a page-ranking system, which estimates the importance of a web page based on indirect trust on that page shared by diverse group of unorganized individuals. These kinds of "democracy" have not been acclaimed yet in the world of real politics. On the other hand, a large amount of data about personal relations including trust, norms of reciprocity, and networks of civic engagement has been accumulated in a computer-readable form by computer systems (e.g., social networking systems). We can use these relations as a new type of social capital to construct a new democratic decision-making system based on a delegation network. In this paper, we propose an effective decision-making support system, which is based on empowering someone's vote whom you trust. For this purpose, we propose two new techniques: the first is for estimating entire vote distribution from a small number of votes, and the second is for estimating active voter choice to promote voting using a delegation network. We show that these techniques could increase the voting ratio and credibility of the whole decision by agent-based simulations.
Keywords: Delegation, network centrality, social network, voting ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17867125 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network
Authors: Farzaneh Ahmadzadeh
Abstract:
Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13777124 Equilibrium Modeling of Carbon Dioxide Adsorption on Zeolites
Authors: Alireza Behvandi, Somayeh Tourani
Abstract:
High pressure adsorption of carbon dioxide on zeolite 13X was investigated in the pressure range (0 to 4) Mpa and temperatures 298, 308 and 323K. The data fitting is accomplished with the Toth, UNILAN, Dubinin-Astakhov and virial adsorption models which are generally used for micro porous adsorbents such as zeolites. Comparison with experimental data from the literature indicated that the virial model would best determine results. These results may be partly attributed to the flexibility of the virial model which can accommodate as many constants as the data warrants.Keywords: adsorption models, zeolite, carbon dioxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28847123 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from trav-eling vehicles, such as taxis through installed global positioning sys-tem (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.
Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5107122 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines
Authors: Gulshan Sharma
Abstract:
This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.
Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8267121 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear
Authors: Barenten Suciu, Yuya Nakamoto
Abstract:
Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.
Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723