Search results for: deterministic algorithm.
1449 Harmonic Analysis of 240 V AC Power Supply using TMS320C6713 DSK
Authors: Dody Ismoyo, Mohammad Awan, Norashikin Yahya
Abstract:
The presence of harmonic in power system is a major concerned to power engineers for many years. With the increasing usage of nonlinear loads in power systems, the harmonic pollution becomes more serious. One of the widely used computation algorithm for harmonic analysis is fast Fourier transform (FFT). In this paper, a harmonic analyzer using FFT was implemented on TMS320C6713 DSK. The supply voltage of 240 V 59 Hz is stepped down to 5V using a voltage divider in order to match the power rating of the DSK input. The output from the DSK was displayed on oscilloscope and Code Composer Studio™ software. This work has demonstrated the possibility of analyzing the 240V power supply harmonic content using the DSK board.Keywords: Harmonic Analysis, DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33491448 Assessment of Mortgage Applications Using Fuzzy Logic
Authors: Swathi Sampath, V. Kalaichelvi
Abstract:
The assessment of the risk posed by a borrower to a lender is one of the common problems that financial institutions have to deal with. Consumers vying for a mortgage are generally compared to each other by the use of a number called the Credit Score, which is generated by applying a mathematical algorithm to information in the applicant’s credit report. The higher the credit score, the lower the risk posed by the candidate, and the better he is to be taken on by the lender. The objective of the present work is to use fuzzy logic and linguistic rules to create a model that generates Credit Scores.
Keywords: Credit scoring, fuzzy logic, mortgage, risk assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27441447 Multi-Label Hierarchical Classification for Protein Function Prediction
Authors: Helyane B. Borges, Julio Cesar Nievola
Abstract:
Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.
Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23801446 Feature Weighting and Selection - A Novel Genetic Evolutionary Approach
Authors: Serkawt Khola
Abstract:
A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.Keywords: Feature weighting, genetic algorithm, pattern recognition, weightless neuron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18551445 Multiagent Systems Simulation
Authors: G. Balakayeva, A. Aktymbayeva
Abstract:
In this paper, we consider components of discrete event imitating model, implementing a simulation model by using JAVA and performing an input analysis of the data and an output analysis of the simulation results. Was lead development of imitating model of mass service system with n (n≥1) devices of service. On the basis of the developed process of a multithreading simulated the distributed processes with presence of synchronization. Was developed the algorithm of event-oriented simulation, was received results of system functioning with n devices of service.
Keywords: Imitating modeling, Mass service system, Multi agentsystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901444 A Study on RFID Privacy Mechanism using Mobile Phone
Authors: Haedong Lee, Dooho Choi, Sokjoon Lee, Howon Kim
Abstract:
This paper is about hiding RFID tag identifier (ID) using handheld device like a cellular phone. By modifying the tag ID of objects periodically or manually using cellular phone built-in a RFID reader chip or with a external RFID reader device, we can prevent other people from gathering the information related with objects querying information server (like an EPC IS) with a tag ID or deriving the information from tag ID-s code structure or tracking the location of the objects and the owner of the objects. In this paper, we use a cryptographic algorithm for modification and restoring of RFID tag ID, and for one original tag ID, there are several different temporary tag ID, periodically.Keywords: EPC, RFID, Mobile RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041443 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801442 Evaluation of Algorithms for Sequential Decision in Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A sequential decision problem, based on the task ofidentifying the species of trees given acoustic echo data collectedfrom them, is considered with well-known stochastic classifiers,including single and mixture Gaussian models. Echoes are processedwith a preprocessing stage based on a model of mammalian cochlearfiltering, using a new discrete low-pass filter characteristic. Stoppingtime performance of the sequential decision process is evaluated andcompared. It is observed that the new low pass filter processingresults in faster sequential decisions.
Keywords: Classification, neuro-spike coding, parametricmodel, Gaussian mixture with EM algorithm, sequential decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471441 Automatic Vehicle Location Systems
Authors: S.A. Mahdavifar, G.R. Sotudeh., K. Heydari
Abstract:
In this article, a single application is suggested to determine the position of vehicles using Geographical Information Systems (GIS) and Geographical Position Systems (GPS). The part of the article material included mapping three dimensional coordinates to two dimensional coordinates using UTM or LAMBERT geographical methods, and the algorithm of conversion of GPS information into GIS maps is studied. Also, suggestions are given in order to implement this system based on web (called web based systems). To apply this system in IRAN, related official in this case are introduced and their duties are explained. Finally, economy analyzed is assisted according to IRAN communicational system.
Keywords: GIS-GPS-UTM-LAMBERT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081440 Bee Colony Optimization Applied to the Bin Packing Problem
Authors: Kenza Aida Amara, Bachir Djebbar
Abstract:
We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.Keywords: Bee colony optimization, bin packing, heuristic algorithm, pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11021439 An Evaluation of Algorithms for Single-Echo Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers' performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.
Keywords: Classification, neuro-spike coding, non-parametricmodel, parametric model, Gaussian mixture, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691438 A New Criterion Pose and Shape of Objects for Collision Risk Estimation
Authors: Do Hyeung Kim, Dae Hee Seo, Byung Doo Kim, Byung Gil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.
Keywords: Collision risk, Pose and shape, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091437 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers
Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho
Abstract:
In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modelling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.
Keywords: Plate heat exchanger, optimization, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19611436 Neuro-Fuzzy System for Equalization Channel Distortion
Authors: Rahib H. Abiyev
Abstract:
In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.
Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16321435 Composite Relevance Feedback for Image Retrieval
Authors: Pushpa B. Patil, Manesh B. Kokare
Abstract:
This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.
Keywords: Image retrieval, relevance feedback, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931434 Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type
Authors: S.G.Venkatesh, S.K.Ayyaswamy, G.Hariharan
Abstract:
In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.
Keywords: Haar wavelet method, Bratu's problem, boundary value problems, initial value problems, adomain decomposition method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29651433 Signal Reconstruction Using Cepstrum of Higher Order Statistics
Authors: Adnan Al-Smadi, Mahmoud Smadi
Abstract:
This paper presents an algorithm for reconstructing phase and magnitude responses of the impulse response when only the output data are available. The system is driven by a zero-mean independent identically distributed (i.i.d) non-Gaussian sequence that is not observed. The additive noise is assumed to be Gaussian. This is an important and essential problem in many practical applications of various science and engineering areas such as biomedical, seismic, and speech processing signals. The method is based on evaluating the bicepstrum of the third-order statistics of the observed output data. Simulations results are presented that demonstrate the performance of this method.
Keywords: Cepstrum, bicepstrum, third order statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371432 Slip Suppression of Electric Vehicles using Model Predictive PID Controller
Authors: Tohru Kawabe
Abstract:
In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25771431 Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method
Authors: H. Ghanbari, H. Nikbakht, A. Zahedi, M. Ghanbari
Abstract:
This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.Keywords: Wind Turbine, Simulink, Reference Tracking Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10641430 Hierarchical Clustering Analysis with SOM Networks
Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy
Abstract:
This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471429 Analysis of Public-Key Cryptography for Wireless Sensor Networks Security
Authors: F. Amin, A. H. Jahangir, H. Rasifard
Abstract:
With the widespread growth of applications of Wireless Sensor Networks (WSNs), the need for reliable security mechanisms these networks has increased manifold. Many security solutions have been proposed in the domain of WSN so far. These solutions are usually based on well-known cryptographic algorithms. In this paper, we have made an effort to survey well known security issues in WSNs and study the behavior of WSN nodes that perform public key cryptographic operations. We evaluate time and power consumption of public key cryptography algorithm for signature and key management by simulation.Keywords: Wireless Sensor Networks, Security, Public Key Cryptography, Key Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36901428 Considering Assembly Operations and Product Structure for Manufacturing Cell Formation
Authors: M.B. Aryanezhad, J. Aliabadi
Abstract:
This paper considers the integration of assembly operations and product structure to Cellular Manufacturing System (CMS) design so that to correct the drawbacks of previous researches in the literature. For this purpose, a new mathematical model is developed which dedicates machining and assembly operations to manufacturing cells while the objective function is to minimize the intercellular movements resulting due to both of them. A linearization method is applied to achieve optimum solution through solving aforementioned nonlinear model by common programming language such as Lingo. Then, using different examples and comparing the results, the importance of integrating assembly considerations is demonstrated.Keywords: Assembly operations and Product structure, CellFormation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15861427 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI
Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny
Abstract:
Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851426 A Trends Analysis of Image Processing in Unmanned Aerial Vehicle
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of domestic and international trends of image processing for data in UAV (unmanned aerial vehicle) and also explains about UAV and Quadcopter. Overseas examples of image processing using UAV include image processing for totaling the total numberof vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT(scale invariant features transform) matching, and application of median filter and thresholding. In Korea, many studies are underway including visualization of new urban buildings.
Keywords: Image Processing, UAV, Quadcopter, Target detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76751425 OFDM and Fingerprint Authentication for Efficient Airport Security
Authors: K.Amrithavarshini, S.Chandrachudeswaran
Abstract:
This paper presents an idea to improve the efficiency of security checks in airports through the active tracking and monitoring of passengers and staff using OFDM modulation technique and Finger print authentication. The details of the passenger are multiplexed using OFDM .To authenticate the passenger, the fingerprint along with important identification information is collected. The details of the passenger can be transmitted after necessary modulation, and received using various transceivers placed within the premises of the airport, and checked at the appropriate check points, thereby increasing the efficiency of checking. OFDM has been employed for spectral efficiency.Keywords: Orthogonal Frequency Division Multiplexing, FFT Algorithm, Fingerprint Authentication, Airport Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18851424 A Learning Agent for Knowledge Extraction from an Active Semantic Network
Authors: Simon Thiel, Stavros Dalakakis, Dieter Roller
Abstract:
This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.
Keywords: Reinforcement learning, learning retrieval agent, search in semantic networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941423 Face Recognition Using Eigen face Coefficients and Principal Component Analysis
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari
Abstract:
Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the work lies in optimizing Euclidean distance and paving the way to test the same algorithm using Matlab which is an efficient tool having powerful user interface along with simplicity in representing complex images.Keywords: Eigen Face, Multidimensional, Matching, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28701422 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile
Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi
Abstract:
In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.
Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501421 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11561420 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230