Search results for: peer social support
3107 CSR of top Portuguese Companies: Relation between Social Performance and Economic Performance
Authors: Afonso, S. C., Fernandes, P. O., Monte, A. P.
Abstract:
Modern times call organizations to have an active role in the social arena, through Corporate Social Responsibility (CSR). The objective of this research was to test the hypothesis that there is a positive relation between social performance and economic performance, and if there is a positive correlation between social performance and financial-economic performance. To test these theories a measure of social performance, based on the Green Book of Commission of the European Community, was used in a group of nineteen Portuguese top companies, listed on the PSI 20 index, through a period of five years, since 2005 to 2009. A clusters analysis was applied to group companies by their social performance and to compare and correlate their economic performance. Results indicate that companies that had a better social performance are not the ones who had a better economic performance, and suggest that the middle path might provide a good relation CSR-Economic performance, as a basis to a sustainable development.Keywords: Corporate Social Responsibility, Economic Performance, Win-Win relationship
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24153106 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals
Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing
Abstract:
Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19013105 A Method for Improving Dental Crown Fit-Increasing the Robustness
Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.
Abstract:
The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16203104 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18313103 A Study of Applying the Use of Breathing Training to Palliative Care Patients, Based on the Bio-Psycho-Social Model
Authors: Wenhsuan Lee, Yachi Chang, Yingyih Shih
Abstract:
In clinical practices, it is common that while facing the unknown progress of their disease, palliative care patients may easily feel anxious and depressed. These types of reactions are a cause of psychosomatic diseases and may also influence treatment results. However, the purpose of palliative care is to provide relief from all kinds of pains. Therefore, how to make patients more comfortable is an issue worth studying. This study adopted the “bio-psycho-social model” proposed by Engel and applied spontaneous breathing training, in the hope of seeing patients’ psychological state changes caused by their physiological state changes, improvements in their anxious conditions, corresponding adjustments of their cognitive functions, and further enhancement of their social functions and the social support system. This study will be a one-year study. Palliative care outpatients will be recruited and assigned to the experimental group or the control group for six outpatient visits (once a month), with 80 patients in each group. The patients of both groups agreed that this study can collect their physiological quantitative data using an HRV device before the first outpatient visit. They also agreed to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” before the first outpatient visit, to fill a self-report questionnaire after each outpatient visit, and to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” after the last outpatient visit. The patients of the experimental group agreed to receive the breathing training under HRV monitoring during the first outpatient visit of this study. Before each of the following three outpatient visits, they were required to fill a self-report questionnaire regarding their breathing practices after going home. After the outpatient visits, they were taught how to practice breathing through an HRV device and asked to practice it after going home. Later, based on the results from the HRV data analyses and the pre-tests and post-tests of the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire”, the influence of the breathing training in the bio, psycho, and social aspects were evaluated. The data collected through the self-report questionnaires of the patients of both groups were used to explore the possible interfering factors among the bio, psycho, and social changes. It is expected that this study will support the “bio-psycho-social model” proposed by Engel, meaning that bio, psycho, and social supports are closely related, and that breathing training helps to transform palliative care patients’ psychological feelings of anxiety and depression, to facilitate their positive interactions with others, and to improve the quality medical care for them.
Keywords: Palliative care, breathing training, bio-psycho-social Model, heart rate variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9263102 An ensemble of Weighted Support Vector Machines for Ordinal Regression
Authors: Willem Waegeman, Luc Boullart
Abstract:
Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.Keywords: Ordinal regression, support vector machines, ensemblelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16413101 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia
Authors: S. Brahim, M. S. Mohamad, E. Zakaria, N. Sarnon@Kusenin
Abstract:
This study aimed to explore the practical experience of child welfare caseworkers and professionalism in child case management in Malaysia. This paper discussed the specific social work practice competency and the challenges faced by child caseworkers in the fieldwork. This research was qualitative with grounded theory approach. Four sessions of focused group discussion (FGD) were conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. knowledge in child case management; 2. professional values of caseworkers towards children; 3. skills in managing cases; and 4. culturally competent practice in child case management. In addition, major challenges faced by the child case manager are the capacity and commitment of the family in children’s rehabilitation program, the credibility of caseworkers are being challenged, and the challenges of support system from intra and interagency. This study is important for policy makers to take into account the capacity and the needs of the child’s caseworker in accordance with the national social work competency framework. It is expected that case management services for children will improve systematically in line with national standards.Keywords: Social work practice, child case management, competency-based knowledge, and professionalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29083100 Shift Invariant Support Vector Machines Face Recognition System
Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas
Abstract:
In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.Keywords: Face recognition, support vector machines, shiftinvariance, image registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17563099 A Cognitive Model of Character Recognition Using Support Vector Machines
Authors: K. Freedman
Abstract:
In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.Keywords: Character recognition, cognitive model, support vector machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18773098 The Effect of Corporate Social Responsibility in the National Commercial Bank in Saudi Arabia
Authors: Nada Azhar
Abstract:
The aim of the paper is to investigate the effect of corporate social responsibility (CSR) CSR on the National Commercial Bank (NCB) in Saudi Arabia. In order to achieve this, a case study was made of the CSR activities of this bank from the perspective of its branch managers. The NCB was chosen as it was one of the first Saudi banks to engage in CSR and currently has a wide range of CSR initiatives. A qualitative research method was used. Open-ended questionnaires were administered to eighty branch managers of the NCB, with fifty-five usable questionnaires returned and twenty managers were interviewed as part of the primary research. Data from both questionnaires and interviews were analysed using qualitative content analysis. Six themes emerged from the questionnaire findings were used to develop the interview questions. These themes are the following: Awareness of employees about CSR in the NCB; CSR activities as a type of investment; Government and media support; Increased employee loyalty in the NCB; Prestige and profit to the NCB; and View of CSR in Islam. This paper makes a theoretical contribution in that it investigates and increases understanding of the effect of CSR on the NCB in Saudi Arabia. In addition, it makes a practical contribution by making recommendations which can support the development of CSR in the NCB. A limitation of the paper is that it is a case study of only one bank. It is therefore recommended that future research could be conducted with other banks in Saudi Arabia, or indeed, with a range of other types of firm within the financial services area in Saudi Arabia. In this way, the same issues could be explored but with a greater potential generalisability of findings of CSR within the Saudi Arabian financial services industry. In addition, this paper takes a qualitative approach and it is suggested that future research be carried out using mixed methods, which could provide a greater depth of analysis.Keywords: Branch managers, corporate social responsibility. national commercial bank, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21503097 Designing Interactive Applications for Social Anxiety Scenario Stories for Children with Autism
Authors: Wen Huei Chou, Yi-Ting Chen
Abstract:
Individuals with Autism Spectrum Disorder (ASD) often struggle with social interactions and communication. It is challenging for them to understand social cues such as facial expressions, body language, and tone of voice in social settings, leading to social conflicts and misunderstandings. Over time, feelings of frustration and anxiety can make them reluctant to engage in social situations and worsen their communication barriers. This study focused on children with autism who also experience social anxiety. Through focus group interviews with parents of children with autism and occupational therapists, it explores the reasons and scenarios behind the development of social anxiety in these children. Social scenario stories and interactive applications tailored for children with autism were designed and developed. In addition, working with the educational robots, coping strategies for various emotional situations were elaborated on, and children were helped to understand their emotions.
Keywords: Autism spectrum disorder, social anxiety, robot, social scenario story, interactive applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573096 Place Recommendation Using Location-Based Services and Real-time Social Network Data
Authors: Kanda Runapongsa Saikaew, Patcharaporn Jiranuwattanawong, Patinya Taearak
Abstract:
Currently, there is excessively growing information about places on Facebook, which is the largest social network but such information is not explicitly organized and ranked. Therefore users cannot exploit such data to recommend places conveniently and quickly. This paper proposes a Facebook application and an Android application that recommend places based on the number of check-ins of those places, the distance of those places from the current location, the number of people who like Facebook page of those places, and the number of talking about of those places. Related Facebook data is gathered via Facebook API requests. The experimental results of the developed applications show that the applications can recommend places and rank interesting places from the most to the least. We have found that the average satisfied score of the proposed Facebook application is 4.8 out of 5. The users’ satisfaction can increase by adding the app features that support personalization in terms of interests and preferences.
Keywords: Mobile computing, location-based services, recommendation system, social network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17803095 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15763094 Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement
Authors: Goh Yung Hong, Mona Masood
Abstract:
This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.
Keywords: Conventional teaching method, Gamification teaching method, Motivation, Engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58073093 CAPWAP Status and Design Considerations for Seamless Roaming Support
Authors: M. Balfaqih, S. Haseeb, M. H. Mazlan, S. N. Hasnan, O. Mahmoud, A. Hashim
Abstract:
Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.Keywords: 802.11, centralized Architecture, CAPWAP, Roaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30383092 Fuzzy Cost Support Vector Regression
Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati
Abstract:
In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.
Keywords: Support vector regression, Fuzzy input, Fuzzy cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13713091 Social Media as a Tool for Political Communication: A Case Study of India
Authors: Srikanth Bade
Abstract:
This paper discusses how the usage of social media has altered certain discourses and communicated with the political institutions for major actions in Indian scenario. The advent of new technology in the form of social media has engrossed the general public to discuss in the open forum. How they promulgated their ideas into action is captured in this study. Moreover, these discourses happening in the social media is analyzed from certain philosophical traditions by adopting a framework. Hence, this paper analyses the role of social media in political communication and change the political discourse. Also, this paper tries to address the issue that whether the deliberation made through social media had indeed communicated the issue of political matters to the decision making authorities.Keywords: Collective action and social capital, political communication, political discourse, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14633090 A Study of Computational Organizational Narrative Generation for Decision Support
Authors: Yeung C.L., Cheung C.F., Wang W.M., Tsui E.
Abstract:
Narratives are invaluable assets of human lives. Due to the distinct features of narratives, they are useful for supporting human reasoning processes. However, many useful narratives become residuals in organizations or human minds nowadays. Researchers have contributed effort to investigate and improve narrative generation processes. This paper attempts to contemplate essential components in narratives and explore a computational approach to acquire and extract knowledge to generate narratives. The methodology and significant benefit for decision support are presented.Keywords: Decision Support, Knowledge Management, Knowledge-based Systems, Narrative Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12993089 Protein Residue Contact Prediction using Support Vector Machine
Authors: Chan Weng Howe, Mohd Saberi Mohamad
Abstract:
Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.Keywords: contact map, protein residue contact, support vector machine, protein structure prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18963088 Facilitating Cooperative Knowledge Support by Role-Based Knowledge-Flow Views
Authors: Chih-Wei Lin, Duen-Ren Liu, Hui-Fang Chen
Abstract:
Effective knowledge support relies on providing operation-relevant knowledge to workers promptly and accurately. A knowledge flow represents an individual-s or a group-s knowledge-needs and referencing behavior of codified knowledge during operation performance. The flow has been utilized to facilitate organizational knowledge support by illustrating workers- knowledge-needs systematically and precisely. However, conventional knowledge-flow models cannot work well in cooperative teams, which team members usually have diverse knowledge-needs in terms of roles. The reason is that those models only provide one single view to all participants and do not reflect individual knowledge-needs in flows. Hence, we propose a role-based knowledge-flow view model in this work. The model builds knowledge-flow views (or virtual knowledge flows) by creating appropriate virtual knowledge nodes and generalizing knowledge concepts to required concept levels. The customized views could represent individual role-s knowledge-needs in teamwork context. The novel model indicates knowledge-needs in condensed representation from a roles perspective and enhances the efficiency of cooperative knowledge support in organizations.Keywords: cooperative knowledge support, knowledge flow, knowledge-flow view, role-based models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13023087 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14413086 Motivated Support Vector Regression using Structural Prior Knowledge
Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang
Abstract:
It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16223085 Motivated Support Vector Regression with Structural Prior Knowledge
Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang
Abstract:
It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13993084 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)
Authors: A.Guntida, K. Suriye, S. Kunjara Na Ayudhya, J. Panpranot, P. Praserthdam
Abstract:
Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450oC and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.
Keywords: Extra support, nanomaterial, propylene self-metathesis, tungsten oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22543083 Helping Others and Youth Mental Health: A Qualitative Study Exploring Perspectives of Youth Engaging in Prosocial Activities
Authors: Saima Hirani, Emmanuela Ojukwu, Nilanga Aki Bandara
Abstract:
Mental health challenges that begin during the youth age period may continue across the entire life course. One way to support youth mental health is to encourage youth engagement in prosocial activities. This study aimed to explore youth’s perceptions about helping others and mental wellbeing, barriers, and enablers for youth to initiate and continue prosocial activities, and strategies for developing the attribute of helping others in youth. We conducted a qualitative study using semi-structured, virtual interviews with 18 young individuals (aged 16-24 years) living in Vancouver, British Columbia, Canada. Youth perceived helping others as a source of feeling peace and calm, finding meaning in life, experiencing social connection and promoting self-care, and relieving stress. Participants reported opportunities to learn new skills, the role of religion, social connections, previous positive experiences, and role modeling as enablers for their prosocial behavior. Heavy time commitment, negative behavior from others, self-doubt, and late exposure to such activities were considered barriers by youth when participating in prosocial activities. Youth also brought forward key recommendations for engaging youth in helping others. The findings of this study support the notion that youth have positive experiences when engaging in helping others and that involving young people in prosocial activities could be used as a protective intervention for promoting youth mental health and overall wellbeing.
Keywords: Helping others, prosocial behavior, youth, mental wellbeing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893082 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Authors: Essam Al Daoud
Abstract:
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19903081 Analysis on the Decision-Making Model of Private Sector Companies in PPP Projects
Authors: Xueqin Shan, Chuanming Wu, Wenhua Hou, Xiaosu Ye
Abstract:
Successful public-private-partnership (PPP) implementation can not be achieved without the active participation of private sector companies. This paper examines the decision-making of private sector companies in public works delivered by the PPP model on the basis of social responsibility theory. It proposes that private sector companies should indentify objectives of entering into PPP projects, and shoulder relevant social responsibilities, while a minimum return should also be guaranteed in their favor, so as to compensate for their assumed risk and support them to take on responsibilities in the future. The paper also gives a calculation regarding the appropriate scale and reasonable degree of private sector involvement in PPP projects through the cost-benefit analysis in a specific case study, with the purpose to guide the private sector companies to create a cooperation environment resembling “symbiosis" and facilitate the smooth implementation of public works delivered by the PPP model.Keywords: Social Responsibility Theory, Cost-benefit Analysis, PPP Projects, Private Sector Companies, Decision-making Modell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15303080 Extended Least Squares LS–SVM
Authors: József Valyon, Gábor Horváth
Abstract:
Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20083079 Identification of the Key Sustainability Issues to Develop New Decision Support Tools in the Spanish Furniture Sector
Authors: P.Cordero, R.Poler, R.Sanchis
Abstract:
The environmental impacts caused by the current production and consumption models, together with the impact that the current economic crisis, bring necessary changes in the European industry toward new business models based on sustainability issues that could allow them to innovate and improve their competitiveness. This paper analyzes the key environmental issues and the current and future market trends in one of the most important industrial sectors in Spain, the furniture sector. It also proposes new decision support tools -diagnostic kit, roadmap and guidelines- to guide companies to implement sustainability criteria into their organizations, including eco-design strategies and other economical and social strategies in accordance with the sustainability definition, and other available tools such as eco-labels, environmental management systems, etc., and to use and combine them to obtain the results the company expects to help improve its competitiveness.
Keywords: Furniture sector, eco-design, sustainability, economical crisis, market trends, roadmap
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15103078 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870