Search results for: negotiation support
1683 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981682 Transformer Top-Oil Temperature Modeling and Simulation
Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende
Abstract:
The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24951681 The Functionality and Usage of CRM Systems
Authors: Michael Torggler
Abstract:
Modern information and communication technologies offer a variety of support options for the efficient handling of customer relationships. CRM systems have been developed, which are designed to support the processes in the areas of marketing, sales and service. Along with technological progress, CRM systems are constantly changing, i.e. the systems are continually enhanced by new functions. However, not all functions are suitable for every company because of different frameworks and business processes. In this context the question arises whether or not CRM systems are widely used in Austrian companies and which business processes are most frequently supported by CRM systems. This paper aims to shed light on the popularity of CRM systems in Austrian companies in general and the use of different functions to support their daily business. First of all, the paper provides a theoretical overview of the structure of modern CRM systems and proposes a categorization of currently available software functionality for collaborative, operational and analytical CRM processes, which provides the theoretical background for the empirical study. Apart from these theoretical considerations, the paper presents the empirical results of a field survey on the use of CRM systems in Austrian companies and analyzes its findings.Keywords: CRM systems, CRM system adoption, CRM system diffusion, CRM functionality, Market study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40521680 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: Road accident, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11311679 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness
Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio
Abstract:
A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.
Keywords: Deafness, psychological support, family, adaptation to disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9801678 Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods
Authors: N. Aldea, V. Rednic, F. Matei, Tiandou Hu, M. Neumann
Abstract:
The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.Keywords: local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorptionspectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801677 Is the use of Social Networking Sites Correlated with Internet Addiction? Facebook Use among Taiwanese College Students
Authors: Sen-Chi Yu, Wei-Hsin Hsu, Min-Ning Yu, Hao-Yi Hsu
Abstract:
The aim of this study was to investigate the correlation between Facebook involvement and internet addiction. We sampled 577 university students in Taiwan and administered a survey of Facebook usage, Facebook involvement scale (FIS), and internet addiction scale. The FIS comprises three factors (salience, emotional support, and amusement). Results showed that the Facebook involvement scale had good reliability and validity. The correlation between Facebook involvement and internet addiction was measured at .395. This means that a higher degree of Facebook involvement indicates a greater degree of psychological dependency on the internet, and a greater propensity towards social withdrawal and other negative psychological consequences associated with internet addiction. Besides, the correlations between three factors of FIS (salience, emotional support, and amusement) and internet addiction ranged from .313-372, indicating that these neither of these factors (salience, emotional support, and amusement) is more effective than the others in predicting internet dependency.Keywords: Social networking sites, Facebook, Facebook Involvement, Internet Addiction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24911676 Development of a Complex Meteorological Support System for UAVs
Authors: Z. Bottyán, F. Wantuch, A. Z. Gyöngyösi, Z. Tuba, K. Hadobács, P. Kardos, R. Kurunczi
Abstract:
The sensitivity of UAVs to the atmospheric effects are apparent. All the same the meteorological support for the UAVs missions is often non-adequate or partly missing. In our paper we show a new complex meteorological support system for different types of UAVs pilots, specialists and decision makers, too. The mentioned system has two important parts with different forecasts approach such as the statistical and dynamical ones. The statistical prediction approach is based on a large climatological data base and the special analog method which is able to select similar weather situations from the mentioned data base to apply them during the forecasting procedure. The applied dynamic approach uses the specific WRF model runs twice a day and produces 96 hours, high resolution weather forecast for the UAV users over the Hungary. An easy to use web-based system can give important weather information over the Carpathian basin in Central-Europe. The mentioned products can be reached via internet connection.Keywords: Aviation meteorology, statistical weather prediction, unmanned aerial systems, WRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27681675 Negotiating Across Cultures: The Case of Hungarian Negotiators
Authors: Júlia Szőke
Abstract:
Negotiating across cultures needs consideration as different cultures have different norms, habits and behavioral patterns. The significance of cross-cultural negotiations lies in the fact that many business relationships have already failed due to the lack of cultural knowledge. Therefore, the paper deals with cross-cultural negotiations in case of Hungarian business negotiators. The aim of the paper is to introduce the findings of a two-phase research conducted among Hungarian business negotiators. In the first phase a qualitative research was conducted to reveal the importance of cultural differences in case of cross-cultural business negotiations from the viewpoint of Hungarian negotiators, whereas in the second phase a quantitative one was conducted to figure out whether cultural stereotypes affect the way how the respondents negotiate with people coming from different cultures. The research found out that in case of Hungarian negotiators it is mostly the lack of cultural knowledge that lurks behind the problems and miscommunication occurring during the negotiations. The research also revealed that stereotypes have an influence on the negotiation styles of Hungarian negotiators. The paper concludes that culture and cultural differences must be taken into consideration in case of cross-cultural negotiations so that problems and misunderstandings could be avoided.
Keywords: Business, culture, negotiations, stereotypes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11141674 Reading Strategy Awareness of English Major Students
Authors: Hsin-Yi Lien
Abstract:
The study explored the role of metacognition in foreign language anxiety on a sample of 411 Taiwanese students of English as a Foreign Language. The reading strategy inventory was employed to evaluate the tertiary learners’ level of metacognitive awareness and a semi-structured background questionnaire was also used to examine the learners’ perceptions of their English proficiency and satisfaction of their current English learning. In addition, gender and academic level differences in employment of reading strategies were investigated. The results showed the frequency of reading strategy use increase slightly along with academic years and males and females actually employ different reading strategies. The EFL tertiary learners in the present study utilized cognitive strategies more frequently than metacognitive strategies or support strategies. Male students use metacognitive strategy more often while female students use cognitive and support strategy more frequently.
Keywords: Cognitive strategy, gender differences, metacognitive strategy, support strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34301673 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19201672 Design of a Pneumonia Ontology for Diagnosis Decision Support System
Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi
Abstract:
Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.
Keywords: Clinical decision support system, diagnostic errors, ontology, pneumonia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8841671 Comparison of Performance between Different SVM Kernels for the Identification of Adult Video
Authors: Hajar Bouirouga, Sanaa El Fkihi , Abdeilah Jilbab, Driss Aboutajdine
Abstract:
In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video.Keywords: Skin detection, Support vector machine, Pornographic videos, Feature extraction, Video filtering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23091670 One-Class Support Vector Machines for Aerial Images Segmentation
Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen
Abstract:
Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431669 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24031668 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.
Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10651667 A Mixed-Methods Approach to Developing and Evaluating an SME Business Support Model for Innovation in Rural England
Authors: Steve Fish, Chris Lambert
Abstract:
Cumbria is a geo-political county in Northwest England within which the Lake District National Park, a UNESCO World Heritage site is located. Whilst the area has a formidable reputation for natural beauty and historic assets, the innovation ecosystem is described as ‘patchy’ for a number of reasons. The county is one of the largest in England by area and is sparsely populated. This paper describes the needs, development and delivery of an SME business-support programme funded by the European Regional Development Fund, Lancaster University and the University of Cumbria. The Cumbria Innovations Platform (CUSP) Project has been designed to respond to the nuanced needs of SMEs in this locale, whilst promoting the adoption of research and innovation. CUSP utilizes a funnel method to support rural businesses with access to university innovation intervention. CUSP has been built on a three-tier model: Communicate, Collaborate and Create. The paper describes this project in detail and presents results in terms of output indicators achieved, a beneficiary telephone survey and wider economic forecasts. From a pragmatic point-of-view, the paper provides experiences and reflections of those people who are delivering and evaluating knowledge exchange. The authors discuss some of the benefits, challenges and implications for both policy makers and practitioners. Finally, the paper aims to serve as an invitation to others who may consider adopting a similar method of university-industry collaboration in their own region.
Keywords: Regional business support, rural business support, university-industry collaboration, collaborative R&D, SMEs, knowledge exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111666 Developing a Multiagent Based Decision Support System for Realtime Multi-Risk Disaster Management
Authors: D. Moser, D. Pinto, A. Cipriano
Abstract:
A Disaster Management System (DMS) is very important for countries with multiple disasters, such as Chile. In the world (also in Chile)different disasters (earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters) happen and have an effect on the population. It is also possible that two or more disasters occur at the same time. This meansthata multi-risk situation must be mastered. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs are concernedwith only a singledisaster (sometimes thecombination of earthquake and tsunami) and often with a particular disaster. Nevertheless, a DSS helps for a better real-time response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture and well defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future.
Keywords: Decision Support System, Disaster Management System, Multi-Risk, Multiagent System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26221665 Vibration of FGM Cylindrical Shells under Effect Clamped-simply Support Boundary Conditions using Hamilton's Principle
Authors: M.R.Isvandzibaei, E.Bidokh, M.R.Alinaghizadeh, A.Nasirian, A.Moarrefzadeh
Abstract:
In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841664 ORPP with MAIEP Based Technique for Loadability Enhancement
Authors: Norziana Aminudin, Titik Khawa Abdul Rahman, Ismail Musirin
Abstract:
One of the factors to maintain system survivability is the adequate reactive power support to the system. Lack of reactive power support may cause undesirable voltage decay leading to total system instability. Thus, appropriate reactive power support scheme should be arranged in order to maintain system stability. The strength of a system capacity is normally denoted as system loadability. This paper presents the enhancement of system loadability through optimal reactive power planning technique using a newly developed optimization technique, termed as Multiagent Immune Evolutionary Programming (MAIEP). The concept of MAIEP is developed based on the combination of Multiagent System (MAS), Artificial Immune System (AIS) and Evolutionary Programming (EP). In realizing the effectiveness of the proposed technique, validation is conducted on the IEEE-26-Bus Reliability Test System. The results obtained from pre-optimization and post-optimization process were compared which eventually revealed the merit of MAIEP.Keywords: Load margin, MAIEP, Maximum loading point, ORPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011663 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar
Abstract:
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191662 Analysis of the Gait Characteristics of Soldier between the Normal and Loaded Gait
Authors: Ji-il Park, Min Kyu Yu, Jong-woo Lee, Sam-hyeon Yoo
Abstract:
The purpose of this research is to analyze the gait strategy between the normal and loaded gait. To this end, five male participants satisfied two conditions: the normal and loaded gait (backpack load 25.2 kg). As expected, results showed that additional loads elicited not a proportional increase in vertical and shear ground reaction force (GRF) parameters but also increase of the impulse, momentum and mechanical work. However, in case of the loaded gait, the time duration of the double support phase was increased unexpectedly. It is because the double support phase which is more stable than the single support phase can reduce instability of the loaded gait. Also, the directions of the pre-collision and after-collision were moved upward and downward compared to the normal gait. As a result, regardless of the additional backpack load, the impulse-momentum diagram during the step-to-step transition was maintained such as the normal gait. It means that human walk efficiently to keep stability and minimize total net works in case of the loaded gait.Keywords: Normal gait, loaded gait, impulse, collision, gait analysis, mechanical work, backpack load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12661661 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks
Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa
Abstract:
In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.Keywords: Collaborative network, matching, partner, preference list, role.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8211660 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding
Authors: Mohd A. Mezher, Maysam F. Abbod
Abstract:
Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301659 A Comparison of Different Soft Computing Models for Credit Scoring
Authors: Nnamdi I. Nwulu, Shola G. Oroja
Abstract:
It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21341658 A New Fuzzy Decision Support Method for Analysis of Economic Factors of Turkey's Construction Industry
Authors: R. Tur, A. Yardımcı
Abstract:
Imperfect knowledge cannot be avoided all the time. Imperfections may have several forms; uncertainties, imprecision and incompleteness. When we look to classification of methods for the management of imperfect knowledge we see fuzzy set-based techniques. The choice of a method to process data is linked to the choice of knowledge representation, which can be numerical, symbolic, logical or semantic and it depends on the nature of the problem to be solved for example decision support, which will be mentioned in our study. Fuzzy Logic is used for its ability to manage imprecise knowledge, but it can take advantage of the ability of neural networks to learn coefficients or functions. Such an association of methods is typical of so-called soft computing. In this study a new method was used for the management of imprecision for collected knowledge which related to economic analysis of construction industry in Turkey. Because of sudden changes occurring in economic factors decrease competition strength of construction companies. The better evaluation of these changes in economical factors in view of construction industry will made positive influence on company-s decisions which are dealing construction.
Keywords: Fuzzy logic, decision support systems, construction industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16381657 Exploring Life Meaningfulness and Its Psychosocial Correlates among Recovering Substance Users – An Indian Perspective
Authors: Fouzia Alsabah Shaikh, Anjali Ghosh
Abstract:
The present study was done primarily to address two major research gaps: firstly, development of an empirical measure of life meaningfulness for substance users and secondly, to determine the psychosocial determinants of life meaningfulness among the substance users. The study is classified into two phases: the first phase which dealt with development of Life Meaningfulness Scale and the second phase which examined the relationship between life meaningfulness and social support, abstinence self efficacy and depression. Both qualitative and quantitative approaches were used for framing items. A Principal Component Analysis yielded three components: Overall Goal Directedness, Striving for healthy lifestyle and Concern for loved ones which collectively accounted for 42.06% of the total variance. The scale and its subscales were also found to be highly reliable. Multiple regression analyses in the second phase of the study revealed that social support and abstinence self efficacy significantly predicted life meaningfulness among 48 recovering inmates of a de-addiction center while level of depression failed to predict life meaningfulness.
Keywords: Perceived Life meaningfulness, Social Support, Abstinence Self Efficacy, Depression, Substance Use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22581656 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131655 Frequency Regulation Support by Variable-Speed Wind Turbines and SMES
Authors: M. Saleh, H. Bevrani
Abstract:
This paper quantifies the impact of providing a shortterm excess active power support of a variable speed wind turbine (VSWT) and effect of super magnetic energy storage (SMES) unit on frequency control, particularly temporary minimum frequency (TMF) term. To demonstrate the effect of these factors on the power system frequency, a three-area power system is considered as a test system.Keywords: Frequency regulation, inertia, primary frequencycontrol, rotational energy, variable speed wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261654 Event Monitoring Based On Web Services for Heterogeneous Event Sources
Authors: Arne Koschel
Abstract:
This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.
Keywords: Event monitoring, ECA, CEP, SOA, Web services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345