Search results for: k-ary Tree Generation
1410 An UML Statechart Diagram-Based MM-Path Generation Approach for Object-Oriented Integration Testing
Authors: Ruilian Zhao, Ling Lin
Abstract:
MM-Path, an acronym for Method/Message Path, describes the dynamic interactions between methods in object-oriented systems. This paper discusses the classifications of MM-Path, based on the characteristics of object-oriented software. We categorize it according to the generation reasons, the effect scope and the composition of MM-Path. A formalized representation of MM-Path is also proposed, which has considered the influence of state on response method sequences of messages. .Moreover, an automatic MM-Path generation approach based on UML Statechart diagram has been presented, and the difficulties in identifying and generating MM-Path can be solved. . As a result, it provides a solid foundation for further research on test cases generation based on MM-Path.
Keywords: MM-Path, Message Sequence, Object-Oriented Integration Testing, Response Method Sequence, UML Statechart Diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26091409 Organizational Culture and Innovation Adoption/Generation: A Proposed Model for Architectural Firms
Authors: Kong-Seng, Lai, Nor'Aini Yusof
Abstract:
Organizational culture fosters innovation, and innovation is the main engine to be sustained within the uncertainty market. Like other countries, the construction industry significantly contributes to the economy, society and technology of Malaysia, yet, innovation is still considered slow compared to other industries such as manufacturing. Given the important role of an architect as the key player and the contributor of new ideas in the construction industry, there is a call to identify the issue and improve the current situation by focusing on the architectural firms. In addition, the existing studies tend to focus only on a few dimensions of organizational culture and very few studies consider whether innovation is being generated or adopted. Hence, the present research tends to fill in the gap by identifying the organizational cultures that foster or hinder innovation generation and/or innovation adoption, and propose a model of organizational culture and innovation generation and/or adoption.
Keywords: Innovation adoption, innovation generation, architectural firm, organizational culture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891408 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: Anthropometric data, data mining, decision tree, garments manufacturing, ready-made garments, sizing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9591407 From Modeling of Data Structures towards Automatic Programs Generating
Authors: Valentin P. Velikov
Abstract:
Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.Keywords: Computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14421406 Fighter Aircraft Selection Using Fuzzy Preference Optimization Programming (POP)
Authors: C. Ardil
Abstract:
The Turkish Air Force needs to acquire a sixth- generation fighter aircraft in order to maintain its air superiority and dominance against its rivals under the risks posed by global geopolitical opportunities and threats. Accordingly, five evaluation criteria were determined to evaluate the sixth-generation fighter aircraft alternatives and to select the best one. Systematically, a new fuzzy preference optimization programming (POP) method is proposed to select the best sixth generation fighter aircraft in an uncertain environment. The POP technique considers both quantitative and qualitative evaluation criteria. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to a multiple criteria decision-making problem to evaluate and select sixth-generation fighter aircraft. The results of the fuzzy POP method are compared with the results of the fuzzy TOPSIS approach to validate it. According to the comparative analysis, fuzzy POP and fuzzy TOPSIS methods get the same results. This demonstrates the applicability of the fuzzy POP technique to address the sixth-generation fighter selection problem.
Keywords: Fighter aircraft selection, sixth-generation fighter aircraft, fuzzy decision process, multiple criteria decision making, preference optimization programming, POP, TOPSIS, Kizilelma, MIUS, fuzzy set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4471405 Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity
Authors: Mliki Bouchmel, Belgacem Nabil, Abbassi Mohamed Ammar, Geudri Kamel, Omri Ahmed
Abstract:
In this numerical work, mixed convection and entropy generation of Cu–water nanofluid in a lid-driven square cavity have been investigated numerically using the Lattice Boltzmann Method. Horizontal walls of the cavity are adiabatic and vertical walls have constant temperature but different values. The top wall has been considered as moving from left to right at a constant speed, U0. The effects of different parameters such as nanoparticle volume concentration (0–0.05), Rayleigh number (104–106) and Reynolds numbers (1, 10 and 100) on the entropy generation, flow and temperature fields are studied. The results have shown that addition of nanoparticles to the base fluid affects the entropy generation, flow pattern and thermal behavior especially at higher Rayleigh and low Reynolds numbers. For pure fluid as well as nanofluid, the increase of Reynolds number increases the average Nusselt number and the total entropy generation, linearly. The maximum entropy generation occurs in nanofluid at low Rayleigh number and at high Reynolds number. The minimum entropy generation occurs in pure fluid at low Rayleigh and Reynolds numbers. Also at higher Reynolds number, the effect of Cu nanoparticles on enhancement of heat transfer was decreased because the effect of lid-driven cavity was increased. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed.Keywords: Entropy generation, mixed convection, nanofluid, lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511404 Effect of Chromatic Dispersion on Optical Generation of Tunable Millimeter-Wave Signals
Authors: M. R. Salehi, S. Khosroabadi
Abstract:
In this paper, the optical generation of three bands of continuously tunable millimeter-wave signals using an optical phase modulator (OPM) and a polarization state rotation filter (PSRF) as an optical notch filter is analyzed. The effect of the chromatic dispersion on millimeter-wave signals is presented.Keywords: Optical generation, millimeter-wave, optical notchfilter , chromatic dispersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621403 Islanding Detection Techniques for Synchronous Distributed Generation
Authors: Bharti B. Parmar, Vivek J. Pandya
Abstract:
The issue of unintentional islanding detection of grid connected synchronous distributed generation (SDG) remains the most challenging task faced by the distributed generation (DG) industry as SDG is highly capable of prolonging an island. This paper gives an insight of anti-islanding detection techniques mainly applied for SDG. Different techniques conclude that it is challenging to point out a generic method for a distinct purpose as the application of particular practice depends on nature of the end use and system dependent elements. Also, the setup and operational cost affect the selection of anti-islanding technique to achieve minimal compromising between cost and system quality. A test bench is created in the MATLAB/Simulink® to demonstrate the results of a 33 kV system. The results are highly satisfactory and they are according to the current practices.
Keywords: Synchronous distributed generation, islanding, point of common coupling, loss of grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631402 Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding
Authors: K.Somasundaram, I.Kaspar Raj
Abstract:
In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC.Keywords: Bit plane, Block Truncation Coding, Image compression, lossy compression, quad tree segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491401 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12901400 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization
Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip
Abstract:
This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction
Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581399 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators
Authors: R. Shivarudraswamy, D. N. Gaonkar
Abstract:
The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.
Keywords: Distributed generation, voltage control, sensitivity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25761398 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7601397 A Study of Computational Organizational Narrative Generation for Decision Support
Authors: Yeung C.L., Cheung C.F., Wang W.M., Tsui E.
Abstract:
Narratives are invaluable assets of human lives. Due to the distinct features of narratives, they are useful for supporting human reasoning processes. However, many useful narratives become residuals in organizations or human minds nowadays. Researchers have contributed effort to investigate and improve narrative generation processes. This paper attempts to contemplate essential components in narratives and explore a computational approach to acquire and extract knowledge to generate narratives. The methodology and significant benefit for decision support are presented.Keywords: Decision Support, Knowledge Management, Knowledge-based Systems, Narrative Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991396 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411395 Power Generation from Sewage by a Micro-Hydraulic Turbine
Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide
Abstract:
This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.
Keywords: Generation of electricity, micro-hydraulic turbine, sewage, sewer pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571394 Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation
Authors: Abdul Rahman Mohd Kasim, Mohd Ariff Admon, Sharidan Shafie
Abstract:
The present paper considers the steady free convection boundary layer flow of a viscoelastics fluid with constant temperature in the presence of heat generation. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity and the results are displayed graphically to illustrate the influence of viscoelastic K, heat generation γ , and Prandtl Number, Pr parameters on the velocity and temperature profiles. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with previous publication.Keywords: Free Convection, Boundary Layer, CircularCylinder, Viscoelastic Fluid, Heat Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231393 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.
Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631392 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32271391 Enhanced-Delivery Overlay Multicasting Scheme by Optimizing Bandwidth and Latency Discrepancy Ratios
Authors: Omar F. Hamad, T. Marwala
Abstract:
With optimized bandwidth and latency discrepancy ratios, Node Gain Scores (NGSs) are determined and used as a basis for shaping the max-heap overlay. The NGSs - determined as the respective bandwidth-latency-products - govern the construction of max-heap-form overlays. Each NGS is earned as a synergy of discrepancy ratio of the bandwidth requested with respect to the estimated available bandwidth, and latency discrepancy ratio between the nodes and the source node. The tree leads to enhanceddelivery overlay multicasting – increasing packet delivery which could, otherwise, be hindered by induced packet loss occurring in other schemes not considering the synergy of these parameters on placing the nodes on the overlays. The NGS is a function of four main parameters – estimated available bandwidth, Ba; individual node's requested bandwidth, Br; proposed node latency to its prospective parent (Lp); and suggested best latency as advised by source node (Lb). Bandwidth discrepancy ratio (BDR) and latency discrepancy ratio (LDR) carry weights of α and (1,000 - α ) , respectively, with arbitrary chosen α ranging between 0 and 1,000 to ensure that the NGS values, used as node IDs, maintain a good possibility of uniqueness and balance between the most critical factor between the BDR and the LDR. A max-heap-form tree is constructed with assumption that all nodes possess NGS less than the source node. To maintain a sense of load balance, children of each level's siblings are evenly distributed such that a node can not accept a second child, and so on, until all its siblings able to do so, have already acquired the same number of children. That is so logically done from left to right in a conceptual overlay tree. The records of the pair-wise approximate available bandwidths as measured by a pathChirp scheme at individual nodes are maintained. Evaluation measures as compared to other schemes – Bandwidth Aware multicaSt architecturE (BASE), Tree Building Control Protocol (TBCP), and Host Multicast Tree Protocol (HMTP) - have been conducted. This new scheme generally performs better in terms of trade-off between packet delivery ratio; link stress; control overhead; and end-to-end delays.
Keywords: Overlay multicast, Available bandwidth, Max-heapform overlay, Induced packet loss, Bandwidth-latency product, Node Gain Score (NGS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15701390 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption
Authors: G.Ashwini, A.T.Eswara
Abstract:
This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441389 Comparison of CPW Fed Microstrip Patch Antennas with Varied Ground Structures for Fixed Satellite Applications
Authors: Deepanshu Kaushal, T. Shanmuganantham
Abstract:
This paper draws a comparison between two microstrip patch antennas having different ground structures. The designs utilize 45 mm x 40 mm x 1.6 mm FR4 epoxy substrate (relative permittivity of 4.4 and dielectric loss tangent of 0.02) and CPW feeding technique. The design 1 uses conducting partial ground plates along the two sides of the radiating X’mas tree shaped patch. The design 2 utilizes an X’mas tree shaped slotted ground structure that features a circular radiating patch. A comparative analysis of results of both designs has been carried. The two designs are intended to serve the fixed satellite applications in X and Ku band respectively.
Keywords: CPW feed, partial ground structures, slotted ground structures, fixed satellite applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701388 Comparative Study - Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important in avoid incident of natural disaster which can cause loss in involved area. This review paper involves three techniques from artificial intelligence namely logistic regression, decisions tree, and random forest which used in making precipitation forecast. These combination techniques through VAR model in finding advantages and strength for every technique in forecast process. Data contains variables from rain domain. Adaptation of artificial intelligence techniques involved on rain domain enables the process to be easier and systematic for precipitation forecast.
Keywords: Logistic regression, decisions tree, random forest, VAR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20411387 A System to Adapt Techniques of Text Summarizing to Polish
Authors: Marcin Ciura, Damian Grund, S
Abstract:
This paper describes a system, in which various methods of text summarizing can be adapted to Polish. A structure of the system is presented. A modular construction of the system and access to the system via the Internet are signaled.
Keywords: Automatic summary generation, linguistic analysis, text generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471386 Hybrid Neuro Fuzzy Approach for Automatic Generation Control of Two -Area Interconnected Power System
Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil
Abstract:
The main objective of Automatic Generation Control (AGC) is to balance the total system generation against system load losses so that the desired frequency and power interchange with neighboring systems is maintained. Any mismatch between generation and demand causes the system frequency to deviate from its nominal value. Thus high frequency deviation may lead to system collapse. This necessitates a very fast and accurate controller to maintain the nominal system frequency. This paper deals with a novel approach of artificial intelligence (AI) technique called Hybrid Neuro-Fuzzy (HNF) approach for an (AGC). The advantage of this controller is that it can handle the non-linearities at the same time it is faster than other conventional controllers. The effectiveness of the proposed controller in increasing the damping of local and inter area modes of oscillation is demonstrated in a two area interconnected power system. The result shows that intelligent controller is having improved dynamic response and at the same time faster than conventional controller.
Keywords: Automatic Generation Control (AGC), Dynamic Model, Two-area Power System, Fuzzy Logic Controller, Neural Network, Hybrid Neuro-Fuzzy(HNF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24611385 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24881384 The Impact of Online Advertising on Generation Y’s Purchase Decision in Malaysia
Authors: Mui Joo Tang, Eang Teng Chan
Abstract:
Advertising is commonly used to foster sales and reputation of an institution. It is at first the growth of print advertising that has increased the population and number of periodicals of newspaper and its circulation. The rise of Internet and online media has somehow blurred the role of media and advertising though the intention is still to reach out to audience and to increase sales. The relationship between advertising and audience on a product purchase through persuasion has been developing from print media to online media. From the changing media environment and audience, it is the concern of this research to study the impact of online advertising to such a relationship cycle. The content of online advertisements is much of text, multimedia, photo, audio and video. The messages of such content format may indeed bring impacts to its audience and its credibility. This study is therefore reflecting the effectiveness of online advertisement and its influences on generation Y in their purchasing behavior. This study uses Media Dependency Theory to analyze the relationship between the impact of online advertisement and media usage pattern of generation Y. Hierarchy of Effectiveness Model is used as a marketing communication model to study the effectiveness of advertising and further to determine the impact of online advertisement on generation Y in their purchasing decision making. This research uses online survey to reach out the sample of generation Y. The results have shown that online advertisements do not affect much on purchase decision making even though generation Y relies much on the media content including online advertisement for its information and believing in its credibility. There are few other external factors that may interrupt the effectiveness of online advertising. The very obvious influence of purchasing behavior is actually derived from the peers.
Keywords: Generation Y, online advertising, online media, persuasion, print media, purchase decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59611383 Optimal Placement of DG in Distribution System to Mitigate Power Quality Disturbances
Authors: G.V.K Murthy, S. Sivanagaraju, S. Satyanarayana, B. Hanumantha Rao
Abstract:
Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.
Keywords: Distributed generation, artificial bee colony method, loss reduction, radial distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28591382 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: Retrieval, generative, deep learning, response generation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12041381 CBCTL: A Reasoning System of TemporalEpistemic Logic with Communication Channel
Authors: Suguru Yoshioka, Satoshi Tojo
Abstract:
This paper introduces a temporal epistemic logic CBCTL that updates agent-s belief states through communications in them, based on computational tree logic (CTL). In practical environments, communication channels between agents may not be secure, and in bad cases agents might suffer blackouts. In this study, we provide inform* protocol based on ACL of FIPA, and declare the presence of secure channels between two agents, dependent on time. Thus, the belief state of each agent is updated along with the progress of time. We show a prover, that is a reasoning system for a given formula in a given a situation of an agent ; if it is directly provable or if it could be validated through the chains of communications, the system returns the proof.Keywords: communication channel, computational tree logic, reasoning system, temporal epistemic logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246