

Abstract—MM-Path, an acronym for Method/Message Path,

describes the dynamic interactions between methods in
object-oriented systems. This paper discusses the classifications of
MM-Path, based on the characteristics of object-oriented software. We
categorize it according to the generation reasons, the effect scope and
the composition of MM-Path. A formalized representation of
MM-Path is also proposed, which has considered the influence of state
on response method sequences of messages. .Moreover, an automatic
MM-Path generation approach based on UML Statechart diagram has
been presented, and the difficulties in identifying and generating
MM-Path can be solved. . As a result, it provides a solid foundation for
further research on test cases generation based on MM-Path.

Keywords—MM-Path, Message Sequence, Object-Oriented
Integration Testing, Response Method Sequence, UML Statechart
Diagram.

I. INTRODUCTION
OWADAYS, object-oriented paradigm has become a
popular technology in modern software industry.

However, along with the development of object-oriented
software, a variety of new challenges for testing appear,
compared to testing for procedural software [1, 2]. Although,
most unit testing and system testing techniques may also be
applicable to object-oriented testing, testing for procedural
software and object-oriented software make a great difference
in integration testing since objects may interact with each other
by unforeseen combinations and invocations. Therefore, it is
necessary to explore new and effective object-oriented
integration testing technique in theory and practice.

There are two main categories of integration testing
strategies. One is based on the functional decomposition tree
such as bottom up, top down, sandwich, and “big bang”
integration testing strategies. The other is based on the call
graph, for instance, pair-wise integration testing and
neighborhood integration testing strategies[3]. The call
graph-based integration testing is directly applicable to

Manuscript received August 31, 2006. This work was supported in part by
the China National Natural Science Fund (No.60473032), Science and
Technology Emphases Item of China Ministry of Education (NO.105018) and
Emphases Laboratory Open Subject of Institute of Software, Chinese Academy
of Sciences (ISCAS) Fund (NO.SYSKF0605).

Ruilian Zhao and Ling Lin are with Department of Computer Science,
Beijing University of Chemical Technology, Beijing, 100029, China (phone:
86-010-6445-4674, e-mail: rlzhao@mail.buct.edu.cn, xyz_olive@sina.com).

object-oriented software, as Unified Modeling language
(UML) provides several dynamic diagrams, such as Statechart
diagram, sequence diagram and collaboration diagram to
illustrate how class instances are interacted by message
invocations [4]. A number of testing approach based on UML
diagrams have been developed to detect software faults in
recent years [5, 6, 7, 8, 9, 10]. For example, reference [5]
identified control flow and data flow by transforming UML
Statechart diagram into extended finite state machines
(EFSMs), and then generated test cases from flow graphs
resulting from EFSMs. Reference [6] first defined the dynamic
behavior of components via UML Statecharts, and then test
cases were derived from these Statecharts and executed with
the help of a test execution tool. Reference [7] introduced an
intermediate diagram, called Testing Flow Graph (TFG), which
was transformed from UML Statechart diagrams to assist test
case generation according to testing coverage criteria of state
and transition. In [8], a method to automatically generate test
cases based on UML state chart specifications was proposed.
There, the conditional predicates on state transitions were
transformed, and function minimization technique was applied.
Reference [9] used the Category-Partition method to introduce
data into a UML model, and described an ongoing research on
test case generation based on UML. In [10], authors first
analyzed different test elements that were critical to test
component-based software. Then they proposed a group of
UML-based test elements, test adequacy criteria to test
component-based software. Obviously, applying UML concept
into object-oriented software testing has become a new trend.

MM-Path, an acronym for Method-Message Path, was
proposed by Paul C. Jorgensen in [11] and then a graphical
representation approach with respect to MM-Path was
introduced in [12]. MM-Path is defined as an interleaved
sequence of method execution paths linked by messages, which
indicates the interactions between methods in object-oriented
systems. Therefore, MM-Path based integration testing
technique is more suitable to object-oriented software.

However, traditionally, MM-Path was generated from source
code by program instrumentation, which brought a great deal
work in order to identify MM-Path in the software under test
[3]. This puts obstacles to MM-Path automatic generation, and
it seriously restricts the usefulness of MM-Path in integration
testing practice although it has many advantages. Hence,

An UML Statechart Diagram-Based MM-Path
Generation Approach for Object-Oriented

Integration Testing
Ruilian Zhao, and Ling Lin

N

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:10, 2008

3470International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

58
21

.p
df

finding a new generation approach for MM-Path is
indispensable and meaningful.

More and more software developers use UML and
associated visual modeling tools as a basis to design and
implement their applications. Furthermore, UML Statechart is
widely used for specifying the dynamic behaviors of classes
and contains necessary information about state transition that is
more propitious to object-oriented software testing. Therefore,
in the research reported in this paper, UML Statecharts are used
as a basis to generate MM-Path. Firstly, WE discuss a formal
representation with respect to MM-Path based on UML
Statechart, and then present an approach to generate MM-Path
from UML Statechart diagram.

The remainder of the paper is organized as follows. Section 2
outlines a background related to the research, defining
MM-Path and introducing UML Statechart diagram. A
description of classification with respect to MM-Path is given
in Section 3. Section 4 presents a formal representation to
atomic and compound MM-Path. Section 5 proposes an
approach to generate MM-Path from UML Statechart diagram,
which is illustrated by a case study in Section 6. Conclusive
remarks and future work are, finally, indicated in Section 7.

II. BACKGROUND

A. MM-Path (Method-Message Path)
MM-Path, defined by P. C. Jorgensen in [11], is descriptive.

In order to conveniently implement the automatic generation of
MM-Path, we, referred to the description of MM-Path in [11],
define a Method-Message Path in this paper as follows.

Definition: Method-Message Path in object-oriented
software, called MM-Path for short, is an execution sequence
of methods linked by messages, whose form is
“Message1-MethodSeq1-Message2-MethodSeq2-…”
(MethodSeqi is the response method sequence of Messagei
here).

MM-Path describes that messages trigger the execution of
methods in object-oriented software. In fact, an MM-Path is
just a series of pairs of messages and its response method
sequences. It starts from a message that activates a
corresponding method to execute, and ends on a method that
does not issue any messages from its own.

Fig. 1 Example of MM-Path

Fig. 1 is a directed-graph representation of an object

network, where dotted line means possible delivering path of
messages in this network, and bold line stands for MM-Path.
There are three objects and three MM-Paths, denoted by ①, ②
and ③, respectively, in Fig. 1. For example, MM-Path② starts
when there is a message calling the method meth2 of the object
Object1. And then MM-Path② is extended to the method
meth2 of the object Object2 as there is a message invoking from
the meth2 of Object1 to the meth2 of Object2 during its
execution. Similarly, MM-Path② is followed by the method
meth3 of the object Object2 and the method meth1 of the object
Object3. Finally, MM-Path② ends on meth1 of Object3
because message quiescence occurs; that is to say, there is no
message issue from meth1 of Object3.

Obviously, MM-Path clearly displays the calling
relationship between methods. However, due to the interaction
complexity in object-oriented software, MM-Path is various.
Thus, it is indispensable to discuss the classification,
characteristics and formal representation of MM-Path before
exploring a MM-Path generation approach.

B. UML Statechart Diagram
Statechart diagrams in UML are used to describe the

dynamic behavior of a class, subsystem or system. The key
elements in a UML Statechart diagram are states, transitions,
events and actions. States and transitions define all possible
states and state changes that an object can achieve during its
lifetime. State changes occur as reactions to events received
from the object’s interfaces. Actions correspond to internal or
external method calls.

Fig. 2 UML Statechart diagram for a stack class

For example, Fig. 2 is the Statechart of a stack class. It

comprises three states, namely Empty, Loaded, and Full
respectively, as well as a start and an end state, denoted by
and . There are five operations in stack class. They are
stack(), ~stack(), push(), pop() and topvalue(). The transitions
from source state to target state are labeled with “event [guard
condition]/action”, which means that, when source state
detects the event and guard condition is also satisfied, a
transition will occur by executing action.. For instance, the
transition “pop()[n==1]/topvalue()” from Loaded state to
Empty state, means that, when pop() event happens on Loaded
state, if guard condition “n==1” is true, then this transition
happens. This is to say, the stack object first executes action

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:10, 2008

3471International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

58
21

.p
df

topvalue(), and implement the transition from Loaded state to
Empty state.

As delivering messages completes event-driven processes in
object-oriented software, the notations of event and message in
UML Statechart diagram are similar. Therefore, we use
message in Statechart diagram instead of event in this research,
and focuses on messages and its corresponding transitions in
UML Statechart diagram. On a basis of that, we discuss
MM-Path formal representation and generation, taking state
transition into consideration.

III. CLASSIFICATION OF MM-PATH
In order to formally represent MM-Path, we first discuss the

classification of MM-Path, according to the generation reasons,
the effect scope and the composition with respect to MM-Path.

A. The Classification According to the Generation Reason
of MM-Path

Object-Oriented Software has many new characteristics,
such as inheritance, polymorphism and so on. All of these
characteristics have an impact on interactions among methods
and MM-Path generation. In the terms of the generation
reasons of MM-Path, MM-Paths can be classified into three
categories

 MM-Path based on calling relationship. This kind of
MM-Path exists, because of calling relationship
between methods resulting from data flow and control
flow. For instance, if method A requires operations or
data processed by method B during its execution, there
exists an MM-Path based on calling relationship. Most
MM-Paths fall into this category since calling
relationship between methods is very universal in
software.

 MM-Path based on inheritance relationship. This kind
of MM-Path results from reuse of methods between
subclass and parent class. For example, when
initializing a subclass, the constructor of its parent class
will be executed before its own is executed. Thus, it
appears as MM-Path based on inheritance relationship.

 MM-Path based on polymorphism. This kind of
MM-Path is produced since base class’s interface is
shared by subclasses. The most important
characteristics of this kind of MM-Path are diversity
and indetermination. A message with different
parameters may be responded by different methods
from different subclasses. The responded method is
determined by dynamic binding.

B. The Classification according to the Effect Scope of
MM-Path

Object-oriented software meets the requirement of high
aggregation and low coupling. Thus, we can sort MM-Path into
two categories, according to the effect scope of MM-Path.

 Intra-class MM-Path. The effect scope of intra-class
MM-Path is limited inside a class. This kind of
MM-Path describes internal methods interactions of a

class. For instance, MM-Path ① in Fig. 1 is an
intra-class, which only contains methods in Object1.

 Inter-class MM-Path. Inter-class MM-Path identifies
the method interactions among classes, whose effect
scope is involved in several co-operated classes. For
instance, MM-Path ② in Fig. 1 is an inter-class
MM-Path, which is related to method interactions
among three classes Object1, Object2, and Object3.
Compared with intra-class MM-Path, the length of
inter-class MM-Path is often longer, and the frequency
of inter-class MM-Path is usually lower. Apparently,
Intra-class MM-Path is an element of inter-class
MM-Path.

C. The Classification according to the Composition of
MM-Path

MM-Path is a series of pairs of message and corresponding
response method sequence. In addition, state is also an
important element in object-oriented software. When taking the
effect of state on message’s response into consideration,
MM-Path can be classified into two categories as follows.

 Atomic MM-Path. Atomic MM-Path is defined as a
response method sequence of a message in a certain
state, with the form similar to “Message-MethodSeq”.
Atomic MM-Path is an element pair of a MM-Path.

 Compound MM-Path. Compound MM-Path is defined
as ordered sequence of atomic MM-Paths. The order
here is related to a certain use case. Thus, a certain use
case decides the order of message in a compound
MM-Path, and each message and its accepted state
determine its own atomic MM-Path. As a result, a
compound MM-Path is constructed. A compound
MM-Path may be an intra-class or inter-class
MM-Path.

Take Fig. 1 as an example. MM-Path① and MM-Path③ are
atomic MM-Path and intra-class MM-Path, because they just
issue one message within one class, while MM-Path② is a
compound MM-Path and inter-class MM-Path.

IV. THE FORMAL REPRESENTATION OF ATOMIC AND
COMPOUND MM-PATH

In this section, we discuss how to formally represent
MM-Path based on atomic MM-Path and compound MM-Path.
Firstly, we use MM to stand for the set of MM-Path, MMa for
the set of atomic MM-Path, MMc for the set of compound
MM-Path. Obviously, the set MM comprises set MMa and
MMc, namely MM=MMa∪MMc.

Atomic MM-Path can be formed as a triplet, MMa (Msg, n)
= (Msg, {State}, MtSeq), where Msg is a accepted message by
class instance, including sender, receiver, message name and
necessary parameters (guard condition, parameters passed,
etc.); n records the number of atomic MM-Path corresponding
to the message Msg; State represents the current state when the
message Msg is accepted; MtSeq is a response method
sequence corresponding to the message Msg. This expression

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:10, 2008

3472International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

58
21

.p
df

of atomic MM-Path means that, when class instance is in any
state of set {State} and accepts a message Msg, it will execute
the method sequence MtSeq, and this is No. n atomic MM-Path
for the message Msg.

Some explanations for this formal representation are given
as follows.
1) Message Msg corresponds to message event in UML

Statechart diagram.
2) {State} is a set of states, including all states, in any of

which class instance executes method sequence MtSeq
after accepting message Msg.

3) Method sequence MtSeq may contain more than one
method.

For example, in Fig. 1, when class instance is in state Init and
accepts message stack, it executes method stack(). The atomic
MM-Path here can be expressed as MMa (stack, 1) = (stack,
{Init}, stack), which is the first atomic MM-Path of message
stack.

Compound MM-Path is related to both atomic MM-Path and
the order of message determined by use case. So we define
three operators to represent the order of message as follows.

 “•” stands for sequence relationship. For instance,
(m1•m2) indicates that message m2 will be executed
after message m1 being executed.

 “|” stands for switch relationship. For instance,
(m1|m2) indicates that message m1 or m2 will be
executed.

 “*” stands for loop relationship. For instance, m1*
indicates that message m1 may be executed zero, one,
or more than one times.

The precedence of these operator is *, |, •, ranging from high
to low.

With these operators, if a use case is given, the order of
messages can be settled. Each pair of message and its accepted
state corresponds to a determined atomic MM-Path, so we can
choose a proper one for every message in the message list, by
referring to atomic MM-Path list. Thus, we can get the
compound MM-Path corresponding to this use case. The detail
will be illustrated in Section 5.

V. GENERATION OF MM-PATH
As the discussion above, atomic MM-Path is the element of

MM-Path. Therefore, atomic MM-Path generation is the key to
MM-Path. As compound MM-Path is related to certain use
cases, its generation need to consider other UML diagrams,
such as use case diagram, sequence diagram, and so on.
Therefore, generation of compound MM-Path will be discussed
in other papers. This paper focuses on the algorithm of atomic
MM-Path generation.

In order to solve the generation problem precisely, we make
several assumptions as follows.

 UML Statechart diagram discussed here is based on
Mealy model. Though there are two kinds of state
machine model, i.e. Mealy and Moore, they are same in
essential and can be transformed from one to another.

 UML Statechart diagram here is deterministic,
consistent, and self-contained. There is no sub state,
nested state and concurrent state. Only message event
might be taken account of.

 MM-Path here is based on calling relationship. The
generation based on inheritance relationship and
polymorphism will be studied in consequent research.

We also assume that, M is the message set of class instance;
Gm is the set of guard conditions with respect to message m
(m∈M); MMa (m, p) stands for the No. p atomic MM-Path with
respect to message m.

Generating atomic MM-Path from UML Statechart diagram
comprises the following two steps:

 Extract information from UML Statechart diagram and
create message response table.

 Generate atomic MM-Path from message response
table.

The detailed descriptions are given in the following
sub-sections.

A. Creating Message Response Table
Message response table, proposed in this paper, is defined to

record corresponding information extracted from UML
Statechart diagram. There are three columns in it, i.e. message,
guard condition and accepted state columns. The accepted
state column lists all possible state of a class instance.
Information in a row indicates corresponding responses with
respect to all possible states. Each item in the accepted state is
expressed as a form of “response method sequence/target
state”. It means that, when current message with certain guard
condition is accepted in current state, response method
sequence in the item will be executed, and then current state is
transformed to target state. For example, TABLE I is a
message response table, which is constructed from UML
Statechart diagram of stack in Fig.2.

In order to create message response table, we first find all
possible states, pairs of message and guard condition, and
record them in the proper place of the message response table.
If a message has no guard condition, DC is placed in
corresponding position, meaning of “don’t consider”. After
that, check the response information of each pair of message
and guard condition. If there is a transition line in UML
Statechart diagram, then we record corresponding information
in corresponding item. If current message isn’t accepted by
current state, we set a “×” in corresponding item. More details
about the creation of message response table will be illustrated
in section 6.

B. Atomic MM-Path Generation Algorithm
The algorithm of generating atomic MM-Path is given as

follows. The input is message response table, and the output is
the set of atomic MM-Path identified in the form presented by
this paper.

(1) Get message set M and guard condition set Gm, which
are, respectively, corresponding to message column and
guard condition column in message response table.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:10, 2008

3473International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

58
21

.p
df

Similarly, get all possible state set S, which can be
attained from accepted state column in message
response table. Let i=j=k=1and state, |)|1|(SiSss ii ≤≤∈ ,
guard condition |)|1|(GmjGmgg jj ≤≤∈ , message

|)|1|(MkMmm kk ≤≤∈ . In addition, set all counters

|)|,...2,1(0 Mkpk == for MMa of message mk
(2) When message mk with guard condition gj is accepted in

state si, if MMa of message mk is none, create an atomic
MM-Path, add it into MMa of, mk and pk＝ pk+1. Then,
go to (4).

(3) If MMa of message mk is not empty, search MMa of mk
for method sequence, which is same as current method
sequence. If such an atomic MM-Path exists, then add
current state si into {state} set of this atomic MM-Path. If
there not exists such an atomic MM-Path, create an
atomic MM-Path, and add it into MMa of mk, and pk＝

pk+1.
(4) Let i=i+1, repeat (2), (3), until i＝|S|.
(5) Let j=j+1, repeat (2), (3), (4), until j=|Gm|.
(6) Let k=k+1,repeat (2), (3), (4), (5), until k=|M|

VI. CASE STUDY
A case study has been carried out with the aim of illustrating

the representation and algorithm discussed above. We take
stack class shown in Fig. 2, as an example. Following the rules
in Section V.A, we can get the message response table as Table
I.

TABLE I
MESSAGE RESPONSE TABLE OF STACK CLASS

Five possible states of stack are listed as sub-columns in the

column of accepted state. All possible pairs of message and
guard condition are listed in the left of the table. As we see,
message push in Fig. 1 has three guard conditions. So there are
three pairs of message push with different guard conditions in
Table I. Similarly, message pop also has three pairs
corresponding three different guard conditions. A transition
line in Fig. 2 corresponds to a non-empty item in Table I. For
example, the transition from state Loaded to state Empty with
message pop, has a guard condition “n==1” and a response
method sequence of topvalue(). We record such information as
“topvalue()/Empty”, in the item corresponding to state Loaded
and message pop with guard condition “n==1”.

After applying the algorithm of generating atomic MM-Path
in Section V.B to Table I, we can get the set of atomic MM-Path
of stack class as follows:

MMa (stack,1)=(stack,{Init}, stack)
MMa (~stack,1)=(~stack,{Empty, Loaded, Full}, ~stack)

MMa (push,1)=(push,{Empty, Loaded}, push)
MMa (push,2)=(push,{Full},push•FullStackException)
MMa (pop,1)=(pop,{Empty},pop•EmptyStackException)
MMa (pop,2)=(pop,{Loaded, Full}, pop•topvalue)
From the results above, we can obtain six atomic MM-Paths

of stack class, one for message stack, one for message ~stack,
two for message push, and two for message pop. For example,
MMa(push,1) means that when stack instance accepts message
push in state Empty or Loaded, operation push will be executed.

With the atomic MM-Paths above, we can give a formal
representation of compound MM-Path related to certain use
case. For example, if there is a use case of stack in Fig. 2, whose
message order can be expressed as stack•(push*|pop*)*•~stack,
the corresponding compound MM-Path is
MMa(stack,1)•((MMa(push,1)|MMa(push,2))
*|(MMa(pop,1)|MMa(pop,2)) *)*•MMa(~stack,1).

A conclusion can be drawn from above case study that
atomic MM-Path generation from UML Statechart diagrams
has extremely simplified the identifition and generation of
atomic MM-Path. During the process of generating MM-Path,
we needn’t care software code, while just concentrate on the
UML Statechart Diagrams. Combined to certain use cases, test
paths and test cases can be developed on a basis of the results
above to test object-oriented software.

VII. CONCLUSION AND FUTURE WORK
In this paper, such problems as classification of MM-Path,

formal representation of MM-Path and generation of MM-Path
from UML Statechart diagram, have been solved. We also give
a case study to illustrate the representation and generation
algorithm presented above. In all, the work above makes a
foundation for object-oriented integration testing based on
MM-Path.

In our further work, following aspects will be studied: (1)
MM-Path generation based on inheritance relationship and
polymorphism; (2) realization of automatic generation tool of
MM-Path; (3) test case generation method based on MM-Path,
combining to UML diagrams; (4) coverage analysis of testing
based on MM-Path.

REFERENCES
[1] W. K. Chan, T. Y. Chen, T. H. Tse, "An Overview of Integration Testing

Techniques for Object-Oriented Programs," Proceeding of the 2nd ACIS
Annual International Conference on Computer and Information Science
(ICIS 2002), 2002

[2] R.V. Binder, Testing Object-Oriented Systems-Models, Patterns, and
Tools, Addison-Wesley, pp.63-107, 1999

[3] Paul C. Jorgensen, Software Testing: A Craftsman's Approach (Second
Edition), Simplified Chinese language edition, China Machine Press,pp.
187-210, 2000

[4] James Rumbaugh, Ivar Jacobson, Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, pp. 85-110, 1999

[5] Y. K. Kim, H. S. Hong, D. H. Bae, “Test Cases Generation From UML
State Diagrams,” IEEE Proc. Software, Vol. 146, No. 4, 1999

[6] Jean Hartmann, Claudio Imoberdorf, Michael Meisinger, "UML-Based
integration testing," Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis, pp. 60-70,
2000

[7] Supaporn Kansomkeat, Wanchai Rivepiboon, "Automated-generating
Test Case Using UML Statechart Diagrams," Proceedings of the 2003

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:10, 2008

3474International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

58
21

.p
df

annual research conference of the South African institute of computer
scientists and information technologists on Enablement through
technology, pp.296-300, Sep. 2003

[8] Philip Samuel, Rajib Mall,"Boundary Value Testing based on UML
Models," Proceedings of the 14th Asian Test Symposium (ATS'05),
pp.94-99,Dec. 2005

[9] Marlon Vieira, Johanne Leduc, Bill Hasling, Rajesh Subramanyan,
Juergen Kazmeier,"Automation of GUI testing using a model-driven
approach," Proceedings of the 2006 international workshop on
Automation of software test, pp. 9-14, May. 2006

[10] Y. Wu, M. Chen, J. Offutt, "UML-based Integration Testing for
Component-Based Software," 2nd International Conference on
COTS-Based Software Systems (ICCBSS), Ottawa, pp.251-260, 2003

[11] Paul C. Jorgensen, Carl Erickson, Object-Oriented Integration Testing,
Communications of ACM, Vol.37,No. 9, pp. 30-38, 1994

[12] Di Lucca G A, Fasolino A R, Carlini U D. “Recovering Use Case Models
from Object-oriented Code: A Thread-based Approach,” In Proc. of 7th
Working Conf. on Reverse Engineering (WCRE'00), IEEE Computer
SocietyPress,pp.108-177,2000

ZHAO RuiLian, received her B.S. and M.S. degree in computer science from
North China Industry University in 1985 and 1990, and Ph.D. degree in
computer science from Institute of Computing Technology, Chinese Academy
of Sciences in 2001. She is now a professor at Department of Computer
Science, Beijing University of Chemical Technology. Her current research
interests include software testing and fault-tolerant computing.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:10, 2008

3475International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

58
21

.p
df

