Search results for: Earth Quake Resisting Features
1692 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters. After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).Keywords: Nd2Zr3(MoO4)9, solid state synthesis, powder x-ray diffraction, zirconium molybdates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10911691 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21201690 Speaker Identification using Neural Networks
Authors: R.V Pawar, P.P.Kajave, S.N.Mali
Abstract:
The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941689 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints
Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi
Abstract:
This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.Keywords: Advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961688 Rare Earth Elements in Soils of Jharia Coal Field
Authors: R. E. Masto, L. C. Ram, S. K. Verma, V. A. Selvi, J. George, R. C. Tripathi, N. K. Srivastava, D. Mohanty, S. K.Jha, A. K. Sinha, A. Sinha
Abstract:
There are many sources trough which the soil get enriched and contaminated with REEs. The determination of REEs in environmental samples has been limited because of the lack of sensitive analytical techniques. Soil samples were collected from four sites including open cast coal mine, natural coal burning, coal washery and control in the coal field located in Dhanbad, India. Total concentrations of rare earth elements (REEs) were determined using the inductively coupled plasma atomic absorption spectrometry in order to assess enrichment status in the coal field. Results showed that the mean concentrations of La, Pr, Eu, Tb, Ho, and Tm in open cast mine and natural coal burning sites were elevated compared to the reference concentrations, while Ce, Nd, Sm, and Gd were elevated in coal washery site. When compared to reference soil, heavy REEs (HREEs) were enriched in open cast mines and natural coal burning affected soils, however, the HREEs were depleted in the coal washery sites. But, the Chondrite-normalization diagram showed significant enrichment for light REEs (LREEs) in all the soils. High concentration of Pr, Eu, Tb, Ho, Tm, and Lu in coal mining and coal burning sites may pose human health risks. Factor analysis showed that distribution and relative abundance of REEs of the coal washery site is comparable with the control. Eventually washing or cleaning of coal could significantly decrease the emission of REEs from coal into the environment.Keywords: Rare earth elements, coal, soil, factor analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28301687 Morpho-Anatomical and Ecological Studies on Endemic of Fritillaria oranensis Pomel. from the Mounts of Tessala (Western Algeria)
Abstract:
Fritillaria oranensis (Liliaceae) was described in 1874 by pomel from Algeria. Plant samples have been collected from the mount of Tessala (Sidi-Bel-Abbes). The morphological features of various organs of the plant are described in detail. In the morphological part of the study, features of various organs of the plants such as stem and leaf were determined and illustrated. Ecological studies provide information about the physical and chemical structure of soil types in Tessala Mountain. The aim of this original investigation is to put forth ecological and anatomical features of these species for the first time, but at the same time given detailed account of the morphological characteristics of the stem and leaf of Fritillaria oranensis.
Keywords: Anatomy, ecology, Liliaceae, morphology, Fritillaria oranensis Pomel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18261686 Uncertainty of the Brazilian Earth System Model for Solar Radiation
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.
Keywords: Climate changes, projections, solar radiation, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9961685 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques
Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici
Abstract:
Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17281684 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27671683 Seismic Evaluation with Shear Walls and Braces for Buildings
Authors: S. K. Madan, R. S. Malik, V. K. Sehgal
Abstract:
R.C.C. buildings with dual structural system consisting of shear walls (or braces) and moment resisting frames have been widely used to resist lateral forces during earthquakes. The dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of combination of braces and shear walls has not yet been studied. The combination may prove to be more effective to resist lateral forces during earthquakes. This concept has been applied to regular R.C.C. buildings provided with shear walls, braces and their combinations.
Keywords: Dynamic analysis, Displacement, Dual structural system, Storey drift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41181682 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines
Authors: Mrs.K.Kavitha, S.Arivazhagan
Abstract:
A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.
Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15231681 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization
Authors: M. F. Zaiyadi, B. Baharudin
Abstract:
Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20691680 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions
Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy
Abstract:
A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.
Keywords: Gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621679 A Robust Salient Region Extraction Based on Color and Texture Features
Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen
Abstract:
In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.Keywords: salient regions, color and texture features, image segmentation, saliency metric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671678 Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR
Authors: M. Soryani, N. Rafat
Abstract:
Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.Keywords: Feature Subset Selection, Genetic Algorithms, Optical Character Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801677 Unequal Error Protection of Facial Features for Personal ID Images Coding
Abstract:
This paper presents an approach for an unequal error protection of facial features of personal ID images coding. We consider unequal error protection (UEP) strategies for the efficient progressive transmission of embedded image codes over noisy channels. This new method is based on the progressive image compression embedded zerotree wavelet (EZW) algorithm and UEP technique with defined region of interest (ROI). In this case is ROI equal facial features within personal ID image. ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques and encoding LL band separately. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The proposed unequal error protection of image transmission has shown to be more appropriate to low bit rate applications, producing better quality output for ROI of the compresses image. The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the UEP of image transmission with defined ROI with facial features and the equal error protection (EEP) over additive white gaussian noise (AWGN) channel.Keywords: Embedded zerotree wavelet (EZW), equal error protection (EEP), facial features, personal ID images, region of interest (ROI), unequal error protection (UEP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901676 Face Recognition Using Discrete Orthogonal Hahn Moments
Authors: Fatima Akhmedova, Simon Liao
Abstract:
One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, nonredundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database.Keywords: Face Recognition, Hahn moments, Recognition-by-parts, Time-lapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771675 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: Segmentation, color-texture, neural networks, fractal, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13741674 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components
Authors: A. Lovascio, A. D’Orazio, V. Centonze
Abstract:
From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.
Keywords: COTS, small satellites, sub-sampling, TT&C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7371673 Feature-Based Machining using Macro
Authors: M. Razak, A. Jusoh, A. Zakaria
Abstract:
This paper presents an on-going research work on the implementation of feature-based machining via macro programming. Repetitive machining features such as holes, slots, pockets etc can readily be encapsulated in macros. Each macro consists of methods on how to machine the shape as defined by the feature. The macro programming technique comprises of a main program and subprograms. The main program allows user to select several subprograms that contain features and define their important parameters. With macros, complex machining routines can be implemented easily and no post processor is required. A case study on machining of a part that comprised of planar face, hole and pocket features using the macro programming technique was carried out. It is envisaged that the macro programming technique can be extended to other feature-based machining fields such as the newly developed STEP-NC domain.Keywords: Feature-based machining, CNC, Macro, STEP-NC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26891672 Influence of Social-Psychological Training on Selected Features of University Students
Authors: Anežka Hamranová, Blandína Šramová, Katarína Fichnová
Abstract:
We presented results of research aimed on findings influence of social - psychological training (realized with students of Constantine the Philosopher University- future teachers within their undergraduate preparation) on the choice of intrapersonal and interpersonal features. After social- psychological training using Interpersonal Check List (ICL) we found out shift of behavior to more adaptive forms in categories, which are characterized by extroversive friendly behavior, willingness to cooperation, conformity regard to social situation, responsible and regardful behavior. Using State-Trait Anxiety Inventory (STAI) we found out the cut down of state anxiety and of trait anxiety. The report was processed within grants KEGA 3/5269/07 and VEGA 1/3675/06.Keywords: Intrapersonal and interpersonal features, social -psychological training, social competences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15721671 Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils
Authors: Bao Thach Nguyen, Abbas Mohajerani
Abstract:
The California Bearing Ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some finegrained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.
Keywords: California bearing ratio, fine-grained soils, pavement, soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66181670 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel
Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid
Abstract:
This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.
Keywords: Earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11311669 Kinematic Behavior of Geogrid Reinforcements during Earthquakes
Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim
Abstract:
Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.Keywords: Geogrid, Soil, Interface, Cyclic Loading, Pullout, and Large scale Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18521668 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.
Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25351667 Text-independent Speaker Identification Based on MAP Channel Compensation and Pitch-dependent Features
Authors: Jiqing Han, Rongchun Gao
Abstract:
One major source of performance decline in speaker recognition system is channel mismatch between training and testing. This paper focuses on improving channel robustness of speaker recognition system in two aspects of channel compensation technique and channel robust features. The system is text-independent speaker identification system based on two-stage recognition. In the aspect of channel compensation technique, this paper applies MAP (Maximum A Posterior Probability) channel compensation technique, which was used in speech recognition, to speaker recognition system. In the aspect of channel robust features, this paper introduces pitch-dependent features and pitch-dependent speaker model for the second stage recognition. Based on the first stage recognition to testing speech using GMM (Gaussian Mixture Model), the system uses GMM scores to decide if it needs to be recognized again. If it needs to, the system selects a few speakers from all of the speakers who participate in the first stage recognition for the second stage recognition. For each selected speaker, the system obtains 3 pitch-dependent results from his pitch-dependent speaker model, and then uses ANN (Artificial Neural Network) to unite the 3 pitch-dependent results and 1 GMM score for getting a fused result. The system makes the second stage recognition based on these fused results. The experiments show that the correct rate of two-stage recognition system based on MAP channel compensation technique and pitch-dependent features is 41.7% better than the baseline system for closed-set test.Keywords: Channel Compensation, Channel Robustness, MAP, Speaker Identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15451666 Power of Doubling: Population Growth and Resource Consumption
Authors: Sarika Bahadure
Abstract:
Sustainability starts with conserving resources for future generations. Since human’s existence on this earth, he has been consuming natural resources. The resource consumption pace in the past was very slow, but industrialization in 18th century brought a change in the human lifestyle. New inventions and discoveries upgraded the human workforce to machines. The mass manufacture of goods provided easy access to products. In the last few decades, the globalization and change in technologies brought consumer oriented market. The consumption of resources has increased at a very high scale. This overconsumption pattern brought economic boom and provided multiple opportunities, but it also put stress on the natural resources. This paper tries to put forth the facts and figures of the population growth and consumption of resources with examples. This is explained with the help of the mathematical expression of doubling known as exponential growth. It compares the carrying capacity of the earth and resource consumption of humans’ i.e. ecological footprint and bio-capacity. Further, it presents the need to conserve natural resources and re-examine sustainable resource use approach for sustainability.
Keywords: Consumption, exponential growth, population, resources, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11131665 Pre-Analysis of Printed Circuit Boards Based On Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show, that a higher contrast is achieved in the near infrared compared to ultraviolett and visible light.
Keywords: Electronic Waste, Recycling, Multispectral Imaging, Printed Circuit Boards, Rare-Earth Elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26851664 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance
Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun
Abstract:
Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841663 Fingerprint Identification using Discretization Technique
Authors: W. Y. Leng, S. M. Shamsuddin
Abstract:
Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361