Search results for: Arrhythmic beat detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1541

Search results for: Arrhythmic beat detection

1361 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: Canny pruning, hand recognition, machine learning, skin tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1360 An Efficient Fall Detection Method for Elderly Care System

Authors: S. Sowmyayani, P. Arockia Jansi Rani

Abstract:

Fall detection is one of the challenging problems in elderly care system. The objective of this paper is to identify falls in elderly care system. In this paper, an efficient fall detection method is proposed to identify falls using correlation factor and Motion History Image (MHI). The proposed method is tested on URF (University of Rzeszow Fall detection) dataset and evaluated with some efficient measures like sensitivity, specificity, precision and classification accuracy. It is compared with other recent methods. The experimental results substantially proved that the proposed method achieves 1.5% higher sensitivity when compared to other methods.

Keywords: Pearson correlation coefficient, motion history image, human shape identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
1359 Object Detection based Weighted-Center Surround Difference

Authors: Seung-Hun Kim, Kye-Hoon Jeon, Byoung-Doo Kang, I1-Kyun Jung

Abstract:

Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved.

Keywords: Saliency Map, Center Surround Difference, Object Detection, Surveillance System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1358 EEG Spikes Detection, Sorting, and Localization

Authors: Mazin Z. Othman, Maan M. Shaker, Mohammed F. Abdullah

Abstract:

This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.

Keywords: EEG time localizations, EEG spike detection, superparamagnetic algorithm, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
1357 Bleeding Detection Algorithm for Capsule Endoscopy

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Automatic detection of bleeding is of practical importance since capsule endoscopy produces an extremely large number of images. Algorithm development of bleeding detection in the digestive tract is difficult due to different contrasts among the images, food dregs, secretion and others. In this study, were assigned weighting factors derived from the independent features of the contrast and brightness between bleeding and normality. Spectral analysis based on weighting factors was fast and accurate. Results were a sensitivity of 87% and a specificity of 90% when the accuracy was determined for each pixel out of 42 endoscope images.

Keywords: bleeding, capsule endoscopy, image analysis, weighted spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
1356 Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)

Authors: Yacine Ait Ali Yahia, Abderazak Guessoum

Abstract:

In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.

Keywords: Edge detection, parametrable recursive filter, autocorrelation structure, distortion measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
1355 Embedded Electrochemistry with a Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents

Authors: Amer Dawoud, Rashid Mia, Arati Biswakarma, Jesy Motchaalangaram, Wujan Miao, Karl Wallace

Abstract:

The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWAs) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.

Keywords: Drone-based, remote detection chemical warfare agents, miniaturized, potentiostat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
1354 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.

Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793
1353 A Trends Analysis of Image Processing in Unmanned Aerial Vehicle

Authors: Jae-Neung Lee, Keun-Chang Kwak

Abstract:

This paper describes an analysis of domestic and international trends of image processing for data in UAV (unmanned aerial vehicle) and also explains about UAV and Quadcopter. Overseas examples of image processing using UAV include image processing for totaling the total numberof vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT(scale invariant features transform) matching, and application of median filter and thresholding. In Korea, many studies are underway including visualization of new urban buildings.

Keywords: Image Processing, UAV, Quadcopter, Target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7675
1352 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water

Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman

Abstract:

The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.

Keywords: Boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutants, pharmaceuticals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
1351 Outdoor Anomaly Detection with a Spectroscopic Line Detector

Authors: O. J. G. Somsen

Abstract:

One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simple spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various widths we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application.

Keywords: Anomaly detection, spectroscopic line imaging, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1350 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
1349 Intelligent Video-Based Monitoring of Freeway Traffic

Authors: Saad M. Al-Garni, Adel A. Abdennour

Abstract:

Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.

Keywords: Background Extraction, Neural Networks, VehicleDetection, Freeway Traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
1348 ICF Neutron Detection Techniques Based on Doped ZnO Crystal

Authors: L. Chen, X. P. Ouyang, Z. B. Zhang, J. F. Zhang, J. L. Liu

Abstract:

Ultrafast doped zinc oxide crystal promised us a good opportunity to build new instruments for ICF fusion neutron measurement. Two pulsed neutron detectors based on ZnO crystal wafer have been conceptually designed, the superfast ZnO timing detector and the scintillation recoil proton neutron detection system. The structure of these detectors was presented, and some characters were studied as well. The new detectors could be much faster than existing systems, and would be more competent for ICF neutron diagnostics.

Keywords: ICF fusion neutron detection, proton recoil telescope, superfast timing, ZnO crystal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1347 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause

Abstract:

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.

Keywords: Image processing, Illumination equalization, Shadow filtering, Object detection, Colour models, Image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
1346 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
1345 Design of FIR Filter for Water Level Detection

Authors: Sakol Udomsiri, Masahiro Iwahashi

Abstract:

This paper proposes a new design of spatial FIR filter to automatically detect water level from a video signal of various river surroundings. A new approach in this report applies "addition" of frames and a "horizontal" edge detector to distinguish water region and land region. Variance of each line of a filtered video frame is used as a feature value. The water level is recognized as a boundary line between the land region and the water region. Edge detection filter essentially demarcates between two distinctly different regions. However, the conventional filters are not automatically adaptive to detect water level in various lighting conditions of river scenery. An optimized filter is purposed so that the system becomes robust to changes of lighting condition. More reliability of the proposed system with the optimized filter is confirmed by accuracy of water level detection.

Keywords: water level, video, filter, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
1344 A Novel Estimation Method for Integer Frequency Offset in Wireless OFDM Systems

Authors: Taeung Yoon, Youngpo Lee, Chonghan Song, Na Young Ha, Seokho Yoon

Abstract:

Ren et al. presented an efficient carrier frequency offset (CFO) estimation method for orthogonal frequency division multiplexing (OFDM), which has an estimation range as large as the bandwidth of the OFDM signal and achieves high accuracy without any constraint on the structure of the training sequence. However, its detection probability of the integer frequency offset (IFO) rapidly varies according to the fractional frequency offset (FFO) change. In this paper, we first analyze the Ren-s method and define two criteria suitable for detection of IFO. Then, we propose a novel method for the IFO estimation based on the maximum-likelihood (ML) principle and the detection criteria defined in this paper. The simulation results demonstrate that the proposed method outperforms the Ren-s method in terms of the IFO detection probability irrespective of a value of the FFO.

Keywords: Orthogonal frequency division multiplexing, integer frequency offset, estimation, training symbol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
1343 Investigation of Utilizing L-Band Horn Antenna in Landmine Detection

Authors: Ahmad H. Abdelgwad, Ahmed A. Nashat

Abstract:

Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR.  One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection.

Keywords: Full wave analysis, ground penetrating radar, horn antenna design, landmine detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
1342 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1341 Shot Detection Using Modified Dugad Model

Authors: Lenka Krulikovská, Jaroslav Polec

Abstract:

In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.

Keywords: Abrupt cut, shot cut detection, adaptive threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
1340 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, despite the tradeoff between the noise level and the speed of the detection. In this paper, an improvement is introduced in the Kalman filter, through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, the effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman Filter, Innovation, False Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
1339 Tomographic Images Reconstruction Simulation for Defects Detection in Specimen

Authors: Kedit J.

Abstract:

This paper is the tomographic images reconstruction simulation for defects detection in specimen. The specimen is the thin cylindrical steel contained with low density materials. The defects in material are simulated in three shapes.The specimen image function will be transformed to projection data. Radon transform and its inverse provide the mathematical for reconstructing tomographic images from projection data. The result of the simulation show that the reconstruction images is complete for defect detection.

Keywords: Tomography, Tomography Reconstruction, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1338 Combine a Population-based Incremental Learning with Artificial Immune System for Intrusion Detection System

Authors: Jheng-Long Wu, Pei-Chann Chang, Hsuan-Ming Chen

Abstract:

This research focus on the intrusion detection system (IDS) development which using artificial immune system (AIS) with population based incremental learning (PBIL). AIS have powerful distinguished capability to extirpate antigen when the antigen intrude into human body. The PBIL is based on past learning experience to adjust new learning. Therefore we propose an intrusion detection system call PBIL-AIS which combine two approaches of PBIL and AIS to evolution computing. In AIS part we design three mechanisms such as clonal selection, negative selection and antibody level to intensify AIS performance. In experimental result, our PBIL-AIS IDS can capture high accuracy when an intrusion connection attacks.

Keywords: Artificial immune system, intrusion detection, population-based incremental learning, evolution computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
1337 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy is crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. Although there exists a number of open-source software tools and artificial intelligence (AI) methods designed for analyzing mitochondrial images, the availability of only a few combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compactibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source Python and OpenCV library, the algorithms are implemented in three stages: pre-processing; image binarization; and coarse-to-fine segmentation. The proposed model is validated using the fluorescence mitochondrial dataset. Ground truth labels generated using Labkit were also used to evaluate the performance of our detection and segmentation model using precision, recall and rand index. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks concludes the paper.

Keywords: 2D, Binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465
1336 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga

Abstract:

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Keywords: OFDM, TWTA, nonlinear distortion, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1335 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1334 An FPGA Implementation of Intelligent Visual Based Fall Detection

Authors: Peng Shen Ong, Yoong Choon Chang, Chee Pun Ooi, Ettikan K. Karuppiah, Shahirina Mohd Tahir

Abstract:

Falling has been one of the major concerns and threats to the independence of the elderly in their daily lives. With the worldwide significant growth of the aging population, it is essential to have a promising solution of fall detection which is able to operate at high accuracy in real-time and supports large scale implementation using multiple cameras. Field Programmable Gate Array (FPGA) is a highly promising tool to be used as a hardware accelerator in many emerging embedded vision based system. Thus, it is the main objective of this paper to present an FPGA-based solution of visual based fall detection to meet stringent real-time requirements with high accuracy. The hardware architecture of visual based fall detection which utilizes the pixel locality to reduce memory accesses is proposed. By exploiting the parallel and pipeline architecture of FPGA, our hardware implementation of visual based fall detection using FGPA is able to achieve a performance of 60fps for a series of video analytical functions at VGA resolutions (640x480). The results of this work show that FPGA has great potentials and impacts in enabling large scale vision system in the future healthcare industry due to its flexibility and scalability.

Keywords: Fall detection, FPGA, hardware implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1333 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform

Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

Abstract:

Real time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Thus, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Edge detection is one of the basic building blocks of video and image processing applications. It is a common block in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.

Keywords: High Level Synthesis, Canny edge detection, Hardware accelerators, and Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
1332 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance

Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab

Abstract:

Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.

Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10156