Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31105
ICF Neutron Detection Techniques Based on Doped ZnO Crystal

Authors: L. Chen, X. P. Ouyang, Z. B. Zhang, J. F. Zhang, J. L. Liu


Ultrafast doped zinc oxide crystal promised us a good opportunity to build new instruments for ICF fusion neutron measurement. Two pulsed neutron detectors based on ZnO crystal wafer have been conceptually designed, the superfast ZnO timing detector and the scintillation recoil proton neutron detection system. The structure of these detectors was presented, and some characters were studied as well. The new detectors could be much faster than existing systems, and would be more competent for ICF neutron diagnostics.

Keywords: ICF fusion neutron detection, proton recoil telescope, superfast timing, ZnO crystal

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758


[1] M. Tanaka, M. Nishikino, H. Yamatani, et al, "Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography", Appl. Phys. Lett., vol. 91, pp. 231117, 2007.
[2] P. J. Simpson, R. Tjossem, A. W. Hunt, et al, "Superfast timing performance from ZnO scintillators", Nucl. Instr. and Meth. A, vol. 505, pp. 82-84, 2003.
[3] Yanagida T, Fujimoto Y, Yoshikawa A, et al, "Scintillation Properties of In Doped ZnO With Different In Concentrations", IEEE Trans. Nucl. Sci., vol. 57, pp. 1325-1328, June 2010.
[4] E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, "Development of ZnO:Ga as an ultra-fast scintillator", Nucl. Instr. and Meth. A, vol. 601, pp. 358-363. 2009.
[5] K. Yamanoi, K. Sakai, T. Nakazato, et al, "Response-time improved hydrothermal-method-grown ZnO scintillator for XFEL timing-observation", Opt. Mater., vol. 32, pp. 1305-1308, 2010.
[6] V. Y. Glebov, C. Stoeckl, T. C. Sangster, et al, "Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA", Rev. Sci. Instrum., vol. 75, pp. 3559-3562, 2004.
[7] Cermet Inc.,
[8] Y. L. Ma, X. P. Ouyang, L. Chen, et al, "Time and energy response of ZnO :Ga crystal to hard X-ray", High Power Laser and Particle Beams, vol. 20, pp. 2088-2090, Dec. 2008 (in Chinese).
[9] E. I. Moses, "The National Ignition Facility (NIF): A path to fusion energy", Energy Conversion and Management, vol. 49, pp. 1795-1802, 2008
[10] C. Lion, "The LMJ program: An overview", Journal of Physics: Conference Series, vol. 244, pp. 12003, 2010.
[11] S. E. Jiang, Y. K. Ding, W. Y. Miao, et al, "Recent progress of inertial confinement fusion experiments in China", Sci China, vol. 39, pp. 1571-1583, Sep 2009 (in Chinese).
[12] V. Y. Glebov, D. D. Meyerhofer, T. C. Sangster, et al, "Development of nuclear diagnostics for the National Ignition Facility", Rev. Sci. Instrum., vol. 77, pp. 10E715, 2006.
[13] T. J. Murphy, C. W. Barnes, R. R. Berggren, et al, "Nuclear diagnostics for the National Ignition Facility", Rev. Sci. Instrum., vol. 72, pp. 773-779, 2001.
[14] J. D. Lindl, P. Amendt, R. L. Berger, et al, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility", Phys Plasmas, vol.11, pp.339-491, Feb 2004.
[15] R. E. Chrien, and J. D. Strachan, "Selective fast neutron detector", Rev. Sci. Instrum., vol. 51, pp. 1638-1640, Dec 1980.
[16] V. Y. Glebov, C. Stoeckl, T. C. Sangster, et al, "NIF Neutron Bang Time Detector Prototype Test on OMEGA", IEEE Trans. Plasma Sci., vol. 33, pp. 70-76, Feb 2005.
[17] L. Grigorjeva, D. Millers, K. Smits, et al, "The luminescence of ZnO ceramics", Radiat. Meas., vol. 45, pp. 441-443, 2010.
[18] M. J. Moran, V. Y. Glebov, C. Stoeckl, et al, "PROTEX: A proton-recoil detector for inertial confinement fusion neutrons", Rev. Sci. Instrum., vol. 76, pp. 23506, 2005.
[19] S. Agostinelli, J. Allison, K. Amako, et al, "GEANT4-a simulation toolkit", Nucl. Instr. and Meth. A, vol. 506, pp. 250-303, 2003.