Search results for: error information
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5018

Search results for: error information

3008 New Findings on the User’s Preferences about Data Visualization of Online Reviews

Authors: Elizabeth Simão Carvalho, Marcirio Silveira Chaves

Abstract:

The information visualization is still a knowledge field that lacks from a solid theory to support it and there is a myriad of existing methodologies and taxonomies that can be combined and adopted as guidelines. In this context, it is necessary to pre-evaluate as much as possible all the assumptions that are considered for its design and development. We present an exploratory study (n = 123) to detect the graphical preferences of travelers using accommodation portals of Web 2.0 (e.g. tripadvisor.com). We took into account some of the most relevant ground rules applied in the field to map visually data and design end-user interaction. Moreover, the evaluation process was completely data visualization oriented. We found out that people tend to refuse more advanced types of visualization and that a hybrid combination between radial graphs and stacked bars should be explored. In sum, this paper introduces new findings about the visual model and the cognitive response of users of accommodation booking websites.

Keywords: Information visualization, Data visualization, Visualization evaluation, Online reviews, Booking portal, Hotel booking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
3007 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

Authors: Yahya H. Zweiri

Abstract:

The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.

Keywords: Neural Networks, Backpropagation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
3006 Mobile Augmented Reality for Collaboration in Operation

Authors: Chong-Yang Qiao

Abstract:

Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.

Keywords: Mobile augmented reality, remote collaboration, user experience, cognitive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
3005 Modular Data and Calculation Framework for a Technology-Based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: Industry 4.0, lean management 4.0, value stream management 4.0, value stream mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
3004 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel

Authors: O. Zarrin, M. Ramezanshirazi

Abstract:

The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.

Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
3003 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
3002 A Study of Feedback Strategy to Improve Inspector Performance by Using Computer Based Training

Authors: Santirat Nansaarng, Sittichai Kaewkuekool, Supreeya Siripattanakunkajorn

Abstract:

The purpose of this research was to study the inspector performance by using computer based training (CBT). Visual inspection task was printed circuit board (PCB) simulated on several types of defects. Subjects were 16 undergraduate randomly selected from King Mongkut-s University of Technology Thonburi and test for 20/20. Then, they were equally divided on performance into two groups (control and treatment groups) and were provided information before running the experiment. Only treatment group was provided feedback information after first experiment. Results revealed that treatment group was showed significantly difference at the level of 0.01. The treatment group showed high percentage on defects detected. Moreover, the attitude of inspectors on using the CBT to inspection was showed on good. These results have been showed that CBT could be used for training to improve inspector performance.

Keywords: Training, Feedback, Computer based Training (CBT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3001 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
3000 Generation of 3D Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimize the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain). To this end, a flight with this type of sensors has been planned, developed and analyzed. It has been applied to the archaeological site of Juliobriga (Cantabria, Spain). A strong dependence of the thermal sensor on the GSD, and the capability of this technique to interpret underground materials. This research allows to state that the thermal nature of the site does not provide main information about the site itself, but with combination with other types of information, such as the DEM, the typology of materials, etc., can produce very positive results with respect to the exploration and knowledge of the site. 

Keywords: process optimization, RGB models, thermal models, UAV, workflow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
2999 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghasemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) for optimizing numerical test functions is presented. In MLABC, two species are used. The first species employs n colonies where each of them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information. The proposed algorithm is tested on a set of well-known test functions. The results show that MLABC algorithm provides efficiency and robustness to solve numerical functions.

Keywords: Artificial bee colony, cooperative artificial bee colony, multilevel cooperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
2998 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
2997 Zinc Sulfide Concentrates and Optimization of their Roasting in Fluidezed Bed Reactor

Authors: B.S.Boyanov, M.P.Sandalski, K.I.Ivanov

Abstract:

The production of glass, ceramic materials and many non-ferrous metals (Zn, Cu, Pb, etc.), ferrous metals (pig iron) and others is connected with the use of a considerable number of initial solid raw materials. Before carrying out the basic technological processes (oxidized roasting, melting, agglomeration, baking) it is necessary to mix and homogenize the raw materials that have different chemical and phase content, granulometry and humidity. For this purpose zinc sulfide concentrates differing in origin are studied for their more complete characteristics using chemical, X-ray diffraction analyses, DTA and TGA as well as Mössbauer spectroscopy. The phases established in most concentrates are: β-ZnS, mZnS.nFeS, FeS2, CuFeS2, PbS, SiO2 (α-quartz). With the help of the developed by us a Web-based information system for a continued period of time different mix proportions from zinc concentrates are calculated and used in practice (roasting in fluidized bed reactor), which have to conform to the technological requirements of the zinc hydrometallurgical technological scheme.

Keywords: fluidized bed reactor, roasting, Web-based information system, zinc concentrates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
2996 A Comparison of Experimental Data with Monte Carlo Calculations for Optimisation of the Sourceto- Detector Distance in Determining the Efficiency of a LaBr3:Ce (5%) Detector

Authors: H. Aldousari, T. Buchacher, N. M. Spyrou

Abstract:

Cerium-doped lanthanum bromide LaBr3:Ce(5%) crystals are considered to be one of the most advanced scintillator materials used in PET scanning, combining a high light yield, fast decay time and excellent energy resolution. Apart from the correct choice of scintillator, it is also important to optimise the detector geometry, not least in terms of source-to-detector distance in order to obtain reliable measurements and efficiency. In this study a commercially available 25 mm x 25 mm BrilLanCeTM 380 LaBr3: Ce (5%) detector was characterised in terms of its efficiency at varying source-to-detector distances. Gamma-ray spectra of 22Na, 60Co, and 137Cs were separately acquired at distances of 5, 10, 15, and 20cm. As a result of the change in solid angle subtended by the detector, the geometric efficiency reduced in efficiency with increasing distance. High efficiencies at low distances can cause pulse pile-up when subsequent photons are detected before previously detected events have decayed. To reduce this systematic error the source-to-detector distance should be balanced between efficiency and pulse pile-up suppression as otherwise pile-up corrections would need to be necessary at short distances. In addition to the experimental measurements Monte Carlo simulations have been carried out for the same setup, allowing a comparison of results. The advantages and disadvantages of each approach have been highlighted.

Keywords: BrilLanCeTM380 LaBr3:Ce(5%), Coincidence summing, GATE simulation, Geometric efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
2995 Application of Griddization Management to Construction Hazard Management

Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu

Abstract:

Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.

Keywords: Construction hazard, grid management, griddization computing, process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2994 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend

Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono

Abstract:

Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.

Keywords: Communication technology between appliances, demand response, load monitoring, smart appliances and smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
2993 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: Time-series clustering, feature extraction, hoax prediction, geospatial events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
2992 Risk Assessment of Building Information Modelling Adoption in Construction Projects

Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad

Abstract:

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Keywords: Risk, BIM, Shannon’s entropy, Fuzzy TOPSIS, construction projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
2991 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
2990 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services

Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.

Keywords: Internet of Things, IoT platform, service platform, virtual file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
2989 Exploring the Relationship between Computerization and Marketing Performance Case Study: Snowa Company

Authors: Mojtaba Molaahmadi, Morteza Raei Dehaghi, Abdolrahim Arghavan

Abstract:

The present study aims to explore the effect of computerization on marketing performance in Snowa Company. In other words, this study intends to respond to this question that whether or not, is there any relationship between utilization of computerization in marketing activities and marketing performance? The statistical population included 60 marketing managers of Snowa Company. In order to test the research hypotheses, Pearson correlation coefficient was employed. The reliability was equal to 96.8%. In this study, computerization was the independent variable and marketing performance was the dependent variable with characteristics of market share, improving the competitive position, and sales volume. The results of testing the hypotheses revealed that there is a significant relationship between utilization of computerization and market share, sales volume and improving the competitive position.

Keywords: Computerization, e-marketing information, information technology, marketing performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
2988 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System

Authors: Ahmed Bensenouci

Abstract:

This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.

Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
2987 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.

Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
2986 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: Quasigeoid, gravity anomalies, covariance, GGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
2985 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
2984 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
2983 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: Association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
2982 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
2981 Information Technology and Business Alignments among Different Divisions: A Comparative Analysis of Japan and South Korea

Authors: Michiko Miyamoto

Abstract:

This paper empirically investigates whether information technology (IT) strategies, business strategies, and divisions are aligned to meet overall business goals for Korean Small and medium-sized enterprises (SMEs), based on structure based Strategic Alignment Model, and make comparison with those of Japanese SMEs. Using 2,869 valid responses of Korean Human Capital Corporate Panel survey, a result of this study suggests that Korean human resources (HR) departments have a major influence over IT strategy, which is the same as Japanese SMEs, even though their management styles are quite different. As for IT strategy, it is not related to other departments at all for Korean SMEs. The Korean management seems to possess a great power over each division, such as Sales/Service, Research and Development/Technical Experts, HR, and Production.

Keywords: IT-business alignment, structured based strategic alignment model, structural equation model, human resources department.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
2980 Gene Selection Guided by Feature Interdependence

Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel

Abstract:

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.

Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
2979 Integrating Geographic Information into Diabetes Disease Management

Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng

Abstract:

Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.

Keywords: Geocoding, chronic disease management, quality of diabetes care, rate ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997