Search results for: Multivariate Adaptive Regression Splines Pulmonary Function Test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6081

Search results for: Multivariate Adaptive Regression Splines Pulmonary Function Test

4071 Power Transformer Noise, Noise Tests, and Example Test Results

Authors: E. Doğan, B. Kekezoğlu

Abstract:

Voltage level must be raised in order to deliver the produced energy to the consumption zones with less loss and less cost. Power transformers used to raise or lower voltage are important parts of the energy transmission system. Power transformers used in switchgear and power generation plants stay in human's intensive habitat zones as a result of expanding cities. Accordingly, noise levels produced by power transformers have begun more and more important and they have established itself as one of the research field. In this research, the noise cause on transformers has been investigated, it's causes has been examined and noise measurement techniques have been introduced. Examples of transformer noise test results are submitted and precautions to be taken were discussed for the purpose of decreasing of the noise which will occurred by transformers.

Keywords: Power transformer, noise measurement, core noise, load noise, fan-pump noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5699
4070 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data

Authors: Wei Lei, Hui Chen, Lin Lu

Abstract:

Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.

Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
4069 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
4068 Analysis of Secondary School Students’ Perceptions about Information Technologies through a Word Association Test

Authors: Fetah Eren, Ismail Sahin, Ismail Celik, Ahmet Oguz Akturk

Abstract:

The aim of this study is to discover secondary school students’ perceptions related to information technologies and the connections between concepts in their cognitive structures. A word association test consisting of six concepts related to information technologies is used to collect data from 244 secondary school students. Concept maps that present students’ cognitive structures are drawn with the help of frequency data. Data are analyzed and interpreted according to the connections obtained as a result of the concept maps. It is determined students associate most with these concepts—computer, Internet, and communication of the given concepts, and associate least with these concepts—computer-assisted education and information technologies. These results show the concepts, Internet, communication, and computer, are an important part of students’ cognitive structures. In addition, students mostly answer computer, phone, game, Internet and Facebook as the key concepts. These answers show students regard information technologies as a means for entertainment and free time activity, not as a means for education.

Keywords: Word association test, cognitive structure, information technology, secondary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
4067 Democratic Political Culture of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok

Authors: Vilasinee Jintalikhitdee, Phusit Phukamchanoad, Sakapas Saengchai

Abstract:

This research aims to study the level of democratic political culture and the factors that affect the democratic political culture of 5th and 6th graders under the authority of Dusit District Office, Bangkok by using stratified sampling for probability sampling and using purposive sampling for non-probability sampling to collect data toward the distribution of questionnaires to 300 respondents. This covers all of the schools under the authority of Dusit District Office. The researcher analyzed the data by using descriptive statistics which include arithmetic mean, standard deviation, and inferential statistics which are Independent Samples T-test (T-test) and One-Way ANOVA (F-test). The researcher also collected data by interviewing the target groups, and then analyzed the data by the use of descriptive analysis. The result shows that 5th and 6th graders under the authority of Dusit District Office, Bangkok have exposed to democratic political culture at high level in overall. When considering each part, it found out that the part that has highest mean is “the constitutional democratic governmental system is suitable for Thailand” statement. The part with the lowest mean is “corruption (cheat and defraud) is normal in Thai society” statement. The factor that affects democratic political culture is grade levels, occupations of mothers, and attention in news and political movements.

Keywords: Democratic, Political Culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
4066 Secure Block-Based Video Authentication with Localization and Self-Recovery

Authors: Ammar M. Hassan, Ayoub Al-Hamadi, Yassin M. Y. Hasan, Mohamed A. A. Wahab, Bernd Michaelis

Abstract:

Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.

Keywords: Authentication, hash function, multiple descriptioncoding, public key encryption, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
4065 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
4064 Predicting the Impact of the Defect on the Overall Environment in Function Based Systems

Authors: Parvinder S. Sandhu, Urvashi Malhotra, E. Ardil

Abstract:

There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, Software Faults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
4063 Effect of a Gravel Bed Flocculator on the Efficiency of a Low Cost Water Treatment Plants

Authors: Alaa Hussein Wadi

Abstract:

The principal objective of a water treatment plant is to produce water that satisfies a set of drinking water quality standards at a reasonable price to the consumers. The gravel-bed flocculator provide a simple and inexpensive design for flocculation in small water treatment plants (less than 5000 m3/day capacity). The packed bed of gravel provides ideal conditions for the formation of compact settleable flocs because of continuous recontact provided by the sinuous flow of water through the interstices formed by the gravel. The field data which were obtained from the operation of the water supply treatment unit cover the physical, chemical and biological water qualities of the raw and settled water as obtained by the operation of the treatment unit. The experiments were carried out with the aim of assessing the efficiency of the gravel filter in removing the turbidity, pathogenic bacteria, from the raw water. The water treatment plant, which was constructed for the treatment of river water, was in principle a rapid sand filter. The results show that the average value of the turbidity level of the settled water was 4.83 NTU with a standard deviation of turbidity 2.893 NTU. This indicated that the removal efficiency of the sedimentation tank (gravel filter) was about 67.8 %. for pH values fluctuated between 7.75 and 8.15, indicating the alkaline nature of the raw water of the river Shatt Al-Hilla, as expected. Raw water pH is depressed slightly following alum coagulation. The pH of the settled water ranged from 7.75 to a maximum of 8.05. The bacteriological tests which were carried out on the water samples were: total coliform test, E-coli test, and the plate count test. In each test the procedure used was as outlined in the Standard Methods for the Examination of Water and Wastewater (APHA, AWWA, and WPCF, 1985). The gravel filter exhibit a low performance in removing bacterial load. The percentage bacterial removal, which is maximum for total plate count (19%) and minimum for total coliform (16.82%).

Keywords: Gravel bed flocculator, turbidity, total coliform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
4062 OXADM Asymmetrical Optical Device: Extending the Application to FTTH System

Authors: Mohammad Syuhaimi Ab-Rahman, Mohd. Saiful Dzulkefly Zan, Mohd Taufiq Mohd Yusof

Abstract:

With the drastically growth in optical communication technology, a lossless, low-crosstalk and multifunction optical switch is most desirable for large-scale photonic network. To realize such a switch, we have introduced the new architecture of optical switch that embedded many functions on single device. The asymmetrical architecture of OXADM consists of 3 parts; selective port, add/drop operation, and path routing. Selective port permits only the interest wavelength pass through and acts as a filter. While add and drop function can be implemented in second part of OXADM architecture. The signals can then be re-routed to any output port or/and perform an accumulation function which multiplex all signals onto single path and then exit to any interest output port. This will be done by path routing operation. The unique features offered by OXADM has extended its application to Fiber to-the Home Technology (FTTH), here the OXADM is used as a wavelength management element in Optical Line Terminal (OLT). Each port is assigned specifically with the operating wavelengths and with the dynamic routing management to ensure no traffic combustion occurs in OLT.

Keywords: OXADM, asymmetrical architecture, optical switch, OLT, FTTH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
4061 CSR of top Portuguese Companies: Relation between Social Performance and Economic Performance

Authors: Afonso, S. C., Fernandes, P. O., Monte, A. P.

Abstract:

Modern times call organizations to have an active role in the social arena, through Corporate Social Responsibility (CSR). The objective of this research was to test the hypothesis that there is a positive relation between social performance and economic performance, and if there is a positive correlation between social performance and financial-economic performance. To test these theories a measure of social performance, based on the Green Book of Commission of the European Community, was used in a group of nineteen Portuguese top companies, listed on the PSI 20 index, through a period of five years, since 2005 to 2009. A clusters analysis was applied to group companies by their social performance and to compare and correlate their economic performance. Results indicate that companies that had a better social performance are not the ones who had a better economic performance, and suggest that the middle path might provide a good relation CSR-Economic performance, as a basis to a sustainable development.

Keywords: Corporate Social Responsibility, Economic Performance, Win-Win relationship

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
4060 Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy

Authors: Chandrakala Varatharajoo, Adelina Binti Asmawi, Nabeel Abdallah Mohammad Abedalaziz

Abstract:

This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.

Keywords: ESL, instruction, morphemic analysis, vocabulary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
4059 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
4058 High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method

Authors: Pan Cheng, Jin Huang, Guang Zeng

Abstract:

Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.

Keywords: boundary integral equation, extrapolation algorithm, aposteriori error estimate, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3656
4057 A Fast Adaptive Content-based Retrieval System of Satellite Images Database using Relevance Feedback

Authors: Hanan Mahmoud Ezzat Mahmoud, Alaa Abd El Fatah Hefnawy

Abstract:

In this paper, we present a system for content-based retrieval of large database of classified satellite images, based on user's relevance feedback (RF).Through our proposed system, we divide each satellite image scene into small subimages, which stored in the database. The modified radial basis functions neural network has important role in clustering the subimages of database according to the Euclidean distance between the query feature vector and the other subimages feature vectors. The advantage of using RF technique in such queries is demonstrated by analyzing the database retrieval results.

Keywords: content-based image retrieval, large database of image, RBF neural net, relevance feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
4056 A New Class χ2 (M, A,) of the Double Difference Sequences of Fuzzy Numbers

Authors: N.Subramanian, U.K.Misra

Abstract:

The aim of this paper is to introduce and study a new concept of strong double χ2 (M,A, Δ) of fuzzy numbers and also some properties of the resulting sequence spaces of fuzzy numbers were examined.

Keywords: Modulus function, fuzzy number, metric space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
4055 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: Curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
4054 Vision Based Robot Experiment: Measurement of Path Related Characteristics

Authors: M. H. Korayem, K. Khoshhal, H. Aliakbarpour

Abstract:

In this paper, a vision based system has been used for controlling an industrial 3P Cartesian robot. The vision system will recognize the target and control the robot by obtaining images from environment and processing them. At the first stage, images from environment are changed to a grayscale mode then it can diverse and identify objects and noises by using a threshold objects which are stored in different frames and then the main object will be recognized. This will control the robot to achieve the target. A vision system can be an appropriate tool for measuring errors of a robot in a situation where the experimental test is conducted for a 3P robot. Finally, the international standard ANSI/RIA R15.05-2 is used for evaluating the path-related characteristics of the robot. To evaluate the performance of the proposed method experimental test is carried out.

Keywords: Robot, Vision, Experiment, Standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
4053 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy

Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun

Abstract:

This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.

Keywords: Magnesium alloy, titanium, SEM, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
4052 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
4051 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
4050 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
4049 Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost

Authors: Antônio P. de Araújo Neto, Ruy D. A. da Silva Neto, Juliana R. de Souza, Salete K. P. de Medeiros, João T. N. de Medeiros

Abstract:

The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient of friction and wear resistance of the specimens. The parameters known to performing the test were 300 rpm rotation, normal load of 16N and duration of 33.5 minutes. The composite with 10% mineral filler performed better, considering that the wear resistance was good when compared to the other compositions and an average low coefficient of friction, in the order of μ ≤ 0.15.

Keywords: Microcomposites, microparticles tailings of scheelite, PTFE, tribology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
4048 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
4047 Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints

Authors: M. Zarei, A. Roozegar, R. Kazemzadeh, J.M. Kauffmann

Abstract:

This paper describes an efficient and practical method for economic dispatch problem in one and two area electrical power systems with considering the constraint of the tie transmission line capacity constraint. Direct search method (DSM) is used with some equality and inequality constraints of the production units with any kind of fuel cost function. By this method, it is possible to use several inequality constraints without having difficulty for complex cost functions or in the case of unavailability of the cost function derivative. To minimize the number of total iterations in searching, process multi-level convergence is incorporated in the DSM. Enhanced direct search method (EDSM) for two area power system will be investigated. The initial calculation step size that causes less iterations and then less calculation time is presented. Effect of the transmission tie line capacity, between areas, on economic dispatch problem and on total generation cost will be studied; line compensation and active power with reactive power dispatch are proposed to overcome the high generation costs for this multi-area system.

Keywords: Economic dispatch, Power System Operation, Direct Search Method, Transmission Capacity Constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
4046 The Loess Regression Relationship Between Age and BMI for both Sydney World Masters Games Athletes and the Australian National Population

Authors: Joe Walsh, Mike Climstein, Ian Timothy Heazlewood, Stephen Burke, Jyrki Kettunen, Kent Adams, Mark DeBeliso

Abstract:

Thousands of masters athletes participate quadrennially in the World Masters Games (WMG), yet this cohort of athletes remains proportionately under-investigated. Due to a growing global obesity pandemic in context of benefits of physical activity across the lifespan, the BMI trends for this unique population was of particular interest. The nexus between health, physical activity and aging is complex and has raised much interest in recent times due to the realization that a multifaceted approach is necessary in order to counteract the obesity pandemic. By investigating age based trends within a population adhering to competitive sport at older ages, further insight might be gleaned to assist in understanding one of many factors influencing this relationship.BMI was derived using data gathered on a total of 6,071 masters athletes (51.9% male, 48.1% female) aged 25 to 91 years ( =51.5, s =±9.7), competing at the Sydney World Masters Games (2009). Using linear and loess regression it was demonstrated that the usual tendency for prevalence of higher BMI increasing with age was reversed in the sample. This trend in reversal was repeated for both male and female only sub-sets of the sample participants, indicating the possibility of improved prevalence of BMI with increasing age for both the sample as a whole and these individual sub-groups.This evidence of improved classification in one index of health (reduced BMI) for masters athletes (when compared to the general population) implies there are either improved levels of this index of health with aging due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport at older ages.

Keywords: Aging, masters athlete, Quetelet Index, sport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
4045 Experimental and Numerical Investigation of the Dispersion of Microparticles Emitted by Machining Operation

Authors: F. Tafnout, E. Belut, B. Oesterlé, J.R. Fontaine

Abstract:

As a part of the development of a numerical method of close capture exhausts systems for machining devices, a test rig recreating a situation similar to a grinding operation, but in a perfectly controlled environment, is used. The properties of the obtained spray of solid particles are initially characterized using particle tracking velocimetry (PTV), in order to obtain input and validation parameters for numerical simulations. The dispersion of a tracer gas (SF6) emitted simultaneously with the particle jet is then studied experimentally, as the dispersion of such a gas is representative of that of finer particles, whose aerodynamic response time is negligible. Finally, complete modeling of the test rig is achieved to allow comparison with experimental results and thus to progress towards validation of the models used to describe a twophase flow generated by machining operation.

Keywords: Pollutants, capture, tracer gas, SF6, PTV, numericalmodeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
4044 Impairments Correction of Six-Port Based Millimeter-Wave Radar

Authors: Dan Ohev Zion, Alon Cohen

Abstract:

In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.

Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
4043 The Effect of Type of Nanoparticles on the Quenching Process

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci

Abstract:

In this study, the experiments were carried out to determine the best coolant for the quenching process among waterbased silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. When the spherical test specimen was heated at high temperatures, it was suddenly immersed into the nanofluids. All experiments were carried out at saturated conditions and under atmospheric pressure. After the experiments, the cooling curves were obtained by using the temperature-time data of the specimen. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.

Keywords: Heat transfer, nanofluid, pool boiling, quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
4042 Reliable Damping Measurements of Solid Beams with Special Focus on the Boundary Conditions and Non-Contact Test Set-Ups

Authors: Ferhat Kadioglu, Ahmet Reha Gunay

Abstract:

Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. To get clear idea about the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained.

Keywords: Vibrating beam technique, dynamic values, damping, boundary conditions, non-contact measuring systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304