Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31824
Experimental and Numerical Investigation of the Dispersion of Microparticles Emitted by Machining Operation

Authors: F. Tafnout, E. Belut, B. Oesterlé, J.R. Fontaine


As a part of the development of a numerical method of close capture exhausts systems for machining devices, a test rig recreating a situation similar to a grinding operation, but in a perfectly controlled environment, is used. The properties of the obtained spray of solid particles are initially characterized using particle tracking velocimetry (PTV), in order to obtain input and validation parameters for numerical simulations. The dispersion of a tracer gas (SF6) emitted simultaneously with the particle jet is then studied experimentally, as the dispersion of such a gas is representative of that of finer particles, whose aerodynamic response time is negligible. Finally, complete modeling of the test rig is achieved to allow comparison with experimental results and thus to progress towards validation of the models used to describe a twophase flow generated by machining operation.

Keywords: Pollutants, capture, tracer gas, SF6, PTV, numericalmodeling.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355


[1] M. Marxen, P. E. Sullivan, M. R. Loewen and B. Jaohne, ¶Çé│Comparison of Gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry¶ÇÇŶÇé┤ Exp. Fluids, vol. 29, pp. 145- 153, 2000.
[2] L. Vignal, ¶ÇǪ¶Çüï¶Çüÿ¶Çüù¶Çüê¶ÇÇâ ¶Çüç¶Çé¶Çüÿ¶Çüæ¶ÇÇâ ¶Çüæ¶Çüÿ¶Çüä¶Çüè¶Çüê¶ÇÇâ ¶Çüç¶Çüê¶ÇÇâ ¶Çüô¶Çüä¶Çüò¶Çüù¶Çüî¶Çüå¶Çüÿ¶ÇüŶÇüê¶Çüû¶ÇÇâ ¶Çüç¶Çüä¶Çüæ¶Çüû¶ÇÇâ ¶Çüÿ¶Çüæ¶Çüê¶ÇÇâ ¶Çüù¶Çüÿ¶Çüò¶Çüà¶Çüÿ¶ÇüŶÇüê¶Çüæ¶Çüå¶Çüê¶ÇÇâ diffusive. Etude du couplage entre phases par diagnostics optiques, PhD thesis, Institut National Polytechnique de Toulouse, France, 2006.
[3] R. Niemelä, Characterization of the performance of industrial ventilation systems by the tracer gas technique, Institute of Occupational Health, Helsinki, Finland, ISBN 951-801-556-2, 1986.
[4] T. Shih, W. Liou, A. Shabbir and J. Zhun, ¶Çé│A new k-¶Çä░ eddy-viscosity model for high Reynolds number turbulent flows - Model development and validation,¶Çé┤ Computers in Fluids, vol.24, pp. 227-238, 1995.
[5] P. Hutchinson, G. F. Hewitt and A. E. Dukler, ¶Çé│Deposition of liquid or solid dispersions from turbulent gas stream : a stochastic model,¶Çé┤ Chem. Engng. Sci., Volume 26, pp 419-439, 1971.
[6] A. D. Gosman, E. ¶ÇǼ¶ÇüƶÇüä¶Çüæ¶Çüæ¶Çüî¶Çüç¶Çüê¶Çüû¶ÇÇŶÇÇâ¶Çé│¶ÇÇñ¶Çüû¶Çüô¶Çüê¶Çüå¶Çüù¶Çüû¶ÇÇâ¶ÇüƶÇüë¶ÇÇâ¶Çüå¶ÇüƶÇüɶÇüô¶Çüÿ¶Çüù¶Çüê¶Çüò¶ÇÇâ¶Çüû¶Çüî¶ÇüɶÇüÿ¶ÇüŶÇüä¶Çüù¶Çüî¶ÇüƶÇüæ¶ÇÇâ¶ÇüƶÇüë¶ÇÇâ¶ÇüŶÇüî¶Çüö¶Çüÿ¶Çüî¶Çüç- fuelled combustors,¶Çé┤ J. Energy, vol.7, pp.482-490, 1983.
[7] P. Desjonquères, Modélisation lagrangienne du comportement de particules discrètes en écoulement turbulent, PhD thesis, Université de Rouen, France, 1987.
[8] A. A. Amsden, P. J. O'Rourke and T. D. Butler. KIVA-2 : a computer program for chemically reactive flows with sprays, Technical Report LA-11560-MS, UC-96, Los Alamos National Laboratory, Los Alamos, New Mexico, May 1989.
[9] G. M. Faeth. ¶Çé│Spray atomization and combustion,¶Çé┤ AIAA-1986-0136, 24th Aerospace Sciences Meeting, Reno, NV, USA, 1986.