Search results for: learning using labeled and unlabelled data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8800

Search results for: learning using labeled and unlabelled data

6820 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions

Authors: Manisha Rathi, Thierry Chaussalet

Abstract:

Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.

Keywords: Admission, Fuzzy, Regression, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
6819 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication

Authors: S. H. J. Liu

Abstract:

This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.

Keywords: Peer corrective feedback, computer-mediated communication, second or foreign language learning, Wikispaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
6818 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
6817 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman

Abstract:

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.

Keywords: Attitude, computer based instruction, information and communication technologies, technology based instruction, teacher candidate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
6816 Application of Data Envelopment Analysis to Assess Quality Management Efficiency

Authors: Chuen Tse Kuah, Kuan Yew Wong, Farzad Behrouzi

Abstract:

This paper is aimed to give an illustration on the application of Data Envelopment Analysis (DEA) as a tool to assess Quality Management (QM) efficiency. A variant of DEA, slack based measure (SBM) is used for this purpose. From this study, it is found that DEA is suitable to measure QM efficiency and give improvement suggestions to the inefficient QM.

Keywords: Quality Management, Data Envelopment Analysis, Slack Based Measure, Efficiency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
6815 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
6814 Prototype of a Federative Factory Data Management for the Support of Factory Planning Processes

Authors: Christian Mosch, Reiner Anderl, Antonio Álvaro de Assis Moura, Klaus Schützer

Abstract:

Due to short product life cycles, increasing variety of products and short cycles of leap innovations manufacturing companies have to increase the flexibility of factory structures. Flexibility of factory structures is based on defined factory planning processes in which product, process and resource data of various partial domains have to be considered. Thus factory planning processes can be characterized as iterative, interdisciplinary and participative processes [1]. To support interdisciplinary and participative character of planning processes, a federative factory data management (FFDM) as a holistic solution will be described. FFDM is already implemented in form of a prototype. The interim results of the development of FFDM will be shown in this paper. The principles are the extracting of product, process and resource data from documents of various partial domains providing as web services on a server. The described data can be requested by the factory planner by using a FFDM-browser.

Keywords: BRAGECRIM, Factory Planning Process, FactoryData Management, Web Services

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
6813 Knowledge Management Factors Affecting the Level of Commitment

Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi

Abstract:

This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.

Keywords: Knowledge management, organizational commitment, loyalty, drilling industry, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
6812 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum

Authors: K. Durairaj, I. N. Umar

Abstract:

The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in different group aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.

Keywords: Asynchronous Discussion Forums, Content Analysis, Knowledge Construction, Social Network Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
6811 Analysis of a WDM System for Tanzania

Authors: Shaban Pazi, Chris Chatwin, Rupert Young, Philip Birch

Abstract:

Internet infrastructures in most places of the world have been supported by the advancement of optical fiber technology, most notably wavelength division multiplexing (WDM) system. Optical technology by means of WDM system has revolutionized long distance data transport and has resulted in high data capacity, cost reductions, extremely low bit error rate, and operational simplification of the overall Internet infrastructure. This paper analyses and compares the system impairments, which occur at data transmission rates of 2.5Gb/s and 10 Gb/s per wavelength channel in our proposed optical WDM system for Internet infrastructure in Tanzania. The results show that the data transmission rate of 2.5 Gb/s has minimum system impairments compared with a rate of 10 Gb/s per wavelength channel, and achieves a sufficient system performance to provide a good Internet access service.

Keywords: Internet infrastructure, WDM system, standard single mode fibers, system impairments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
6810 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
6809 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
6808 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: Marginal gingivitis, cross-sectional, retrograde, prevalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520
6807 Growing Self Organising Map Based Exploratory Analysis of Text Data

Authors: Sumith Matharage, Damminda Alahakoon

Abstract:

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
6806 Impact of Fixation Time on Subjective Video Quality Metric: a New Proposal for Lossy Compression Impairment Assessment

Authors: M. G. Albanesi, R. Amadeo

Abstract:

In this paper, a new approach for quality assessment tasks in lossy compressed digital video is proposed. The research activity is based on the visual fixation data recorded by an eye tracker. The method involved both a new paradigm for subjective quality evaluation and the subsequent statistical analysis to match subjective scores provided by the observer to the data obtained from the eye tracker experiments. The study brings improvements to the state of the art, as it solves some problems highlighted in literature. The experiments prove that data obtained from an eye tracker can be used to classify videos according to the level of impairment due to compression. The paper presents the methodology, the experimental results and their interpretation. Conclusions suggest that the eye tracker can be useful in quality assessment, if data are collected and analyzed in a proper way.

Keywords: eye tracker, video compression, video qualityassessment, visual attention

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
6805 Expanding Business Strategy to Native American Communities Using Experiential Learning

Authors: A. J. Otjen

Abstract:

Native American communities are struggling with unemployment and depressed economies. A major cause is a lack of business knowledge, education, and cultural desire. And yet, in the history of the American West, Native Americans were considered the best traders and negotiators for everything from furs to weapons to buffalo. To improve these economies, there has been an effort to reintroduce that heritage to todays and tomorrows generation of tribal members, such Crow, Cheyenne, and Blackfeet. Professors at the College of Business Montana State University-Billings (MSUB) teach tribal students in Montana to create business plans. These plans have won national small business plan competitions. The teaching and advising method used at MSUB is uniquely successful as theses business students are now five time national champions. This article reviews the environment and the method of learning to achieve a winning small business plan with Native American students. It discusses the five plans that became national champions. And it discusses the problems and solutions discovered in the process of achieving results. Students who participated in this endeavor have graduated and become CPAs, MBAs, and gainfully employed in their chosen professions. They have also worked to improve the economies of their native lands and homes. By educating members of these communities with business strategy and plan development, they are better able to impact their own economies.

Keywords: Entrepreneurship, Native Americans economies, small businesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
6804 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
6803 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
6802 Balanced k-Anonymization

Authors: Sabah S. Al-Fedaghi

Abstract:

The technique of k-anonymization has been proposed to obfuscate private data through associating it with at least k identities. This paper investigates the basic tabular structures that underline the notion of k-anonymization using cell suppression. These structures are studied under idealized conditions to identify the essential features of the k-anonymization notion. We optimize data kanonymization through requiring a minimum number of anonymized values that are balanced over all columns and rows. We study the relationship between the sizes of the anonymized tables, the value k, and the number of attributes. This study has a theoretical value through contributing to develop a mathematical foundation of the kanonymization concept. Its practical significance is still to be investigated.

Keywords: Balanced tables, k-anonymization, private data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
6801 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
6800 A Temporal Synchronization Model for Heterogeneous Data in Distributed Systems

Authors: Jorge Estudillo Ramirez, Saul E. Pomares Hernandez

Abstract:

Multimedia distributed systems deal with heterogeneous data, such as texts, images, graphics, video and audio. The specification of temporal relations among different data types and distributed sources is an open research area. This paper proposes a fully distributed synchronization model to be used in multimedia systems. One original aspect of the model is that it avoids the use of a common reference (e.g. wall clock and shared memory). To achieve this, all possible multimedia temporal relations are specified according to their causal dependencies.

Keywords: Multimedia, Distributed Systems, Partial Ordering, Temporal Synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
6799 Materialized View Effect on Query Performance

Authors: Yusuf Ziya Ayık, Ferhat Kahveci

Abstract:

Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.

Keywords: Materialized view, pre-computation, query cost, query performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
6798 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plainsided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the requirement for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: Grouted Connection, Numerical Model, Offshore Structure, Wear, Wind Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
6797 Investigating the Influence of L2 Motivational Self-System on Willingness to Communicate in English: A Study of Chinese Non-English Major Students in EFL Classrooms

Authors: Wanghongshu Zhou

Abstract:

This study aims to explore the relationship between the second language motivational self-system (L2MSS) and the willingness to communicate (WTC) among Chinese non-English major students in order to provide pedagogical implications for English as a Foreign Language (EFL) classrooms in Chinese universities. By employing a mixed methods approach, we involved 103 Chinese non-English major students from a typical university in China, conducted questionnaire survey to measure their levels of L2WTC and L2MSS level, and then analyzed the correlation between the two above mentioned variables. Semi-structured interviews were conducted with eight participants to provide a deeper understanding and explanation of the questionnaire data. Findings show that 1) Chinese non-English major students’ ideal L2 self and L2 learning experience could positively predict their L2 WTC in EFL class; 2) Chinese non-English major students’ ought-to L2 self might have no significant impact on their L2 WTC in EFL class; and 3) self-confidence might be another main factor that will influence Chinese non-English major students’ L2 WTC in EFL class. These findings might shed light on the second language acquisition field and provide pedagogical recommendations for pre-service as well as in-service EFL teachers.

Keywords: Chinese non-English major students, L2 Motivation, L2 willingness to communicate, self-confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
6796 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239
6795 A Novel Implementation of Application Specific Instruction-set Processor (ASIP) using Verilog

Authors: Kamaraju.M, Lal Kishore.K, Tilak.A.V.N

Abstract:

The general purpose processors that are used in embedded systems must support constraints like execution time, power consumption, code size and so on. On the other hand an Application Specific Instruction-set Processor (ASIP) has advantages in terms of power consumption, performance and flexibility. In this paper, a 16-bit Application Specific Instruction-set processor for the sensor data transfer is proposed. The designed processor architecture consists of on-chip transmitter and receiver modules along with the processing and controlling units to enable the data transmission and reception on a single die. The data transfer is accomplished with less number of instructions as compared with the general purpose processor. The ASIP core operates at a maximum clock frequency of 1.132GHz with a delay of 0.883ns and consumes 569.63mW power at an operating voltage of 1.2V. The ASIP is implemented in Verilog HDL using the Xilinx platform on Virtex4.

Keywords: ASIP, Data transfer, Instruction set, Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
6794 Data Mining Applied to the Predictive Model of Triage System in Emergency Department

Authors: Wen-Tsann Lin, Yung-Tsan Jou, Yih-Chuan Wu, Yuan-Du Hsiao

Abstract:

The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.

Keywords: Back-propagation Neural Networks, Data Mining, Emergency Department, Triage System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
6793 Dynamic Metadata Schemes in the Neutron and Photon Science Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata is one of the most important aspects for advancing data management practices within all research communities. Definitions and schemes of metadata are inter alia of particular significance in the domain of neutron and photon scattering experiments covering a broad area of different scientific disciplines. The demand of describing continuously evolving highly non-standardized experiments, including the resulting processed and published data, constitutes a considerable challenge for a static definition of metadata. Here, we present the concept of dynamic metadata for the neutron and photon scientific community, which enriches a static set of defined basic metadata. We explore the idea of dynamic metadata with the help of the use case of X-ray Photon Correlation Spectroscopy (XPCS), which is a synchrotron-based scattering technique that allows the investigation of nanoscale dynamic processes. It serves here as a demonstrator of how dynamic metadata can improve data acquisition, sharing, and analysis workflows. Our approach enables researchers to tailor metadata definitions dynamically and adapt them to the evolving demands of describing data and results from a diverse set of experiments. We demonstrate that dynamic metadata standards yield advantages that enhance data reproducibility, interoperability, and the dissemination of knowledge.

Keywords: Big data, metadata, schemas, XPCS, X-ray Photon Correlation Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
6792 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
6791 A Software Tool Design for Cerebral Infarction of MR Images

Authors: Kyoung-Jong Park, Woong-Gi Jeon, Hee-Cheol Kim, Dong-Eog Kim, Heung-Kook Choi

Abstract:

The brain MR imaging-based clinical research and analysis system were specifically built and the development for a large-scale data was targeted. We used the general clinical data available for building large-scale data. Registration period for the selection of the lesion ROI and the region growing algorithm was used and the Mesh-warp algorithm for matching was implemented. The accuracy of the matching errors was modified individually. Also, the large ROI research data can accumulate by our developed compression method. In this way, the correctly decision criteria to the research result was suggested. The experimental groups were age, sex, MR type, patient ID and smoking which can easily be queries. The result data was visualized of the overlapped images by a color table. Its data was calculated by the statistical package. The evaluation for the utilization of this system in the chronic ischemic damage in the area has done from patients with the acute cerebral infarction. This is the cause of neurologic disability index location in the center portion of the lateral ventricle facing. The corona radiate was found in the position. Finally, the system reliability was measured both inter-user and intra-user registering correlation.

Keywords: Software tool design, Cerebral infarction, Brain MR image, Registration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672