Search results for: Tracking algorithm.
1836 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study
Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali
Abstract:
In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.
Keywords: Nanoparticles, Newtonian fluid model, chemical reaction, heat source/sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10011835 Direct Torque Control - DTC of Induction Motor Used for Piloting a Centrifugal Pump Supplied by a Photovoltaic Generator
Authors: S. Abouda, F. Nollet, A. Chaari, N. Essounbouli, Y. Koubaa
Abstract:
In this paper we propose the study of a centrifugal pump control system driven by a three-phase induction motor, which is supplied by a PhotoVoltaic PV generator. The system includes solar panel, a DC / DC converter equipped with its MPPT control, a voltage inverter to three-phase Pulse Width Modulation - PWM and a centrifugal pump driven by a three phase induction motor. In order to control the flow of the centrifugal pump, a Direct Torque Control - DTC of the induction machine is used. To illustrate the performances of the control, simulation results are carried out using Matlab/Simulink.
Keywords: Photovoltaic generators, Maximum power point tracking (MPPT), DC/DC converters, Induction motor, Direct torque control (DTC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31781834 Real-Time Measurement Approach for Tracking the ΔV10 Estimate Value of DC EAF
Authors: Jin-Lung Guan, Jyh-Cherng Gu, Chun-Wei Huang, Hsin-Hung Chang
Abstract:
This investigation develops a revisable method for estimating the estimate value of equivalent 10 Hz voltage flicker (DV10) of a DC Electric Arc Furnace (EAF). This study also discusses three 161kV DC EAFs by field measurement, with those results indicating that the estimated DV10 value is significantly smaller than the survey value. The key point is that the conventional means of estimating DV10 is inappropriate. There is a main cause as the assumed Qmax is too small.
Although DC EAF is regularly operated in a constant MVA mode, the reactive power variation in the Main Transformer (MT) is more significant than that in the Furnace Transformer (FT). A substantial difference exists between estimated maximum reactive power fluctuation (DQmax) and the survey value from actual DC EAF operations. However, this study proposes a revisable method that can obtain a more accurate DV10 estimate than the conventional method.
Keywords: Voltage Flicker, dc EAF, Estimate Value, DV10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33591833 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very large scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.
Keywords: Digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20661832 Bee Parameter Determination via Weighted Centriod Modified Simplex and Constrained Response Surface Optimisation Methods
Authors: P. Luangpaiboon
Abstract:
Various intelligences and inspirations have been adopted into the iterative searching process called as meta-heuristics. They intelligently perform the exploration and exploitation in the solution domain space aiming to efficiently seek near optimal solutions. In this work, the bee algorithm, inspired by the natural foraging behaviour of honey bees, was adapted to find the near optimal solutions of the transportation management system, dynamic multi-zone dispatching. This problem prepares for an uncertainty and changing customers- demand. In striving to remain competitive, transportation system should therefore be flexible in order to cope with the changes of customers- demand in terms of in-bound and outbound goods and technological innovations. To remain higher service level but lower cost management via the minimal imbalance scenario, the rearrangement penalty of the area, in each zone, including time periods are also included. However, the performance of the algorithm depends on the appropriate parameters- setting and need to be determined and analysed before its implementation. BEE parameters are determined through the linear constrained response surface optimisation or LCRSOM and weighted centroid modified simplex methods or WCMSM. Experimental results were analysed in terms of best solutions found so far, mean and standard deviation on the imbalance values including the convergence of the solutions obtained. It was found that the results obtained from the LCRSOM were better than those using the WCMSM. However, the average execution time of experimental run using the LCRSOM was longer than those using the WCMSM. Finally a recommendation of proper level settings of BEE parameters for some selected problem sizes is given as a guideline for future applications.Keywords: Meta-heuristic, Bee Algorithm, Dynamic Multi-Zone Dispatching, Linear Constrained Response SurfaceOptimisation Method, Weighted Centroid Modified Simplex Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13771831 Radar Task Schedulers based on Multiple Queue
Authors: María I. Jiménez, Alberto Izquierdo, Juan J. Villacorta, Lara del Val, Mariano Raboso
Abstract:
There are very complex communication systems, as the multifunction radar, MFAR (Multi-Function Array Radar), where functions are integrated all together, and simultaneously are performed the classic functions of tracking and surveillance, as all the functions related to the communication, countermeasures, and calibration. All these functions are divided into the tasks to execute. The task scheduler is a key element of the radar, since it does the planning and distribution of energy and time resources to be shared and used by all tasks. This paper presents schedulers based on the use of multiple queue. Several schedulers have been designed and studied, and it has been made a comparative analysis of different performed schedulers. The tests and experiments have been done by means of system software simulation. Finally a suitable set of radar characteristics has been selected to evaluate the behavior of the task scheduler working.Keywords: Queue Theory, Radar, Scheduler, Task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22111830 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25021829 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II
Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang
Abstract:
To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.
Keywords: Waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5581828 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design
Authors: D. Mondal, A. Chakrabarti, A. Sengupta
Abstract:
This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19621827 Matching Pursuit based Removal of Cardiac Pulse-Related Artifacts in EEG/fMRI
Authors: Rainer Schneider, Stephan Lau, Levin Kuhlmann, Simon Vogrin, Maciej Gratkowski, Mark Cook, Jens Haueisen
Abstract:
Cardiac pulse-related artifacts in the EEG recorded simultaneously with fMRI are complex and highly variable. Their effective removal is an unsolved problem. Our aim is to develop an adaptive removal algorithm based on the matching pursuit (MP) technique and to compare it to established methods using a visual evoked potential (VEP). We recorded the VEP inside the static magnetic field of an MR scanner (with artifacts) as well as in an electrically shielded room (artifact free). The MP-based artifact removal outperformed average artifact subtraction (AAS) and optimal basis set removal (OBS) in terms of restoring the EEG field map topography of the VEP. Subsequently, a dipole model was fitted to the VEP under each condition using a realistic boundary element head model. The source location of the VEP recorded inside the MR scanner was closest to that of the artifact free VEP after cleaning with the MP-based algorithm as well as with AAS. While none of the tested algorithms offered complete removal, MP showed promising results due to its ability to adapt to variations of latency, frequency and amplitude of individual artifact occurrences while still utilizing a common template.Keywords: matching pursuit, ballistocardiogram, artifactremoval, EEG/fMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16921826 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.
Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4601825 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Authors: Manisha Dubey, Aalok Dubey
Abstract:
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27441824 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941823 Mathematical Modelling of Single Phase Unity Power Factor Boost Converter
Authors: Sanjay L. Kurkute, Pradeep M. Patil, Kakasaheb C. Mohite
Abstract:
An optimal control strategy based on simple model, a single phase unity power factor boost converter is presented with an evaluation of first order differential equations. This paper presents an evaluation of single phase boost converter having power factor correction. The simple discrete model of boost converter is formed and optimal control is obtained, digital PI is adopted to adjust control error. The method of instantaneous current control is proposed in this paper for its good tracking performance of dynamic response. The simulation and experimental results verified our design.Keywords: Single phase, boost converter, Power factor correction (PFC), Pulse Width Modulation (PWM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34721822 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach
Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh
Abstract:
Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system. This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.
Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6821821 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks
Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim
Abstract:
Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21601820 A New Categorization of Image Quality Metrics Based On a Model of Human Quality Perception
Authors: Maria Grazia Albanesi, Riccardo Amadeo
Abstract:
This study presents a new model of the human image quality assessment process: the aim is to highlightthe foundations of the image quality metrics proposed in literature, by identifyingthe cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to createa novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effectiveobjective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biasesare not taken in account at all. We then propose a possible methodology to address this issue.
Keywords: Eye-Tracking, image quality assessment metric, MOS, quality of user experience, visual perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24571819 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette
Authors: M.K. Bhuyan, Aragala Jagan.
Abstract:
Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19171818 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37931817 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441816 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil
Abstract:
Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.
Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501815 On Analysis of Boundness Property for ECATNets by Using Rewriting Logic
Authors: Noura Boudiaf, Allaoua Chaoui
Abstract:
To analyze the behavior of Petri nets, the accessibility graph and Model Checking are widely used. However, if the analyzed Petri net is unbounded then the accessibility graph becomes infinite and Model Checking can not be used even for small Petri nets. ECATNets [2] are a category of algebraic Petri nets. The main feature of ECATNets is their sound and complete semantics based on rewriting logic [8] and its language Maude [9]. ECATNets analysis may be done by using techniques of accessibility analysis and Model Checking defined in Maude. But, these two techniques supported by Maude do not work also with infinite-states systems. As a category of Petri nets, ECATNets can be unbounded and so infinite systems. In order to know if we can apply accessibility analysis and Model Checking of Maude to an ECATNet, we propose in this paper an algorithm allowing the detection if the ECATNet is bounded or not. Moreover, we propose a rewriting logic based tool implementing this algorithm. We show that the development of this tool using the Maude system is facilitated thanks to the reflectivity of the rewriting logic. Indeed, the self-interpretation of this logic allows us both the modelling of an ECATNet and acting on it.Keywords: ECATNets, Rewriting Logic, Maude, Finite-stateSystems, Infinite-state Systems, Boundness Property Checking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13911814 Adaptive and Personalizing Learning Sequence Using Modified Roulette Wheel Selection Algorithm
Authors: Melvin A. Ballera
Abstract:
Prior literature in the field of adaptive and personalized learning sequence in e-learning have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization, but complex to implement due to expensive algorithmic programming and need of extensive and prior data. The main objective of personalizing learning sequence is to maximize learning by dynamically selecting the closest teaching operation in order to achieve the learning competency of learner. In this paper, a revolutionary technique has been proposed and tested to perform individualization and personalization using modified reversed roulette wheel selection algorithm that runs at O(n). The technique is simpler to implement and is algorithmically less expensive compared to other revolutionary algorithms since it collects the dynamic real time performance matrix such as examinations, reviews, and study to form the RWSA single numerical fitness value. Results show that the implemented system is capable of recommending new learning sequences that lessens time of study based on student's prior knowledge and real performance matrix.Keywords: E-learning, fitness value, personalized learning sequence, reversed roulette wheel selection algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20351813 Web-Based Architecture of a System for Design Assessment of Night Vision Devices
Authors: Daniela I. Borissova, Ivan C. Mustakerov, Evgeni D. Bantutov
Abstract:
Nowadays the devices of night vision are widely used both for military and civil applications. The variety of night vision applications require a variety of the night vision devices designs. A web-based architecture of a software system for design assessment before producing of night vision devices is developed. The proposed architecture of the web-based system is based on the application of a mathematical model for designing of night vision devices. An algorithm with two components – for iterative design and for intelligent design is developed and integrated into system architecture. The iterative component suggests compatible modules combinations to choose from. The intelligent component provides compatible combinations of modules satisfying given user requirements to device parameters. The proposed web-based architecture of a system for design assessment of night vision devices is tested via a prototype of the system. The testing showed the applicability of both iterative and intelligent components of algorithm.
Keywords: Night vision devices, design modeling, software architecture, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651812 Chemical Species Concentration Measurement via Wireless Sensors
Authors: Jer Hayes, Stephen Beirne, Breda M. Kiernan, Conor Slater, King-Tong Lau, Dermot Diamond
Abstract:
This paper describes studies carried out to investigate the viability of using wireless cameras as a tool in monitoring changes in air quality. A camera is used to monitor the change in colour of a chemically responsive polymer within view of the camera as it is exposed to varying chemical species concentration levels. The camera captures this image and the colour change is analyzed by averaging the RGB values present. This novel chemical sensing approach is compared with an established chemical sensing method using the same chemically responsive polymer coated onto LEDs. In this way, the concentration levels of acetic acid in the air can be tracked using both approaches. These approaches to chemical plume tracking have many applications for air quality monitoring.Keywords: Environmental sensing, chemical sensors, wirelesssensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891811 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311810 Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction
Authors: Kwangjin Hong, Chulhan Lee, Keechul Jung, Kyoungsu Oh
Abstract:
For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.Keywords: Fast 3D Feature Extraction, Gesture Recognition, Computer Vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16411809 Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)
Authors: Yi-Pin Hsu, Shin-Yu Lin
Abstract:
An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.
Keywords: Parallel-computing, FFT, low-memory reference, TIDSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051808 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots
Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano
Abstract:
Energy efficiency and locomotion speed are two key parameters for legged robots, thus finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high-speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.
Keywords: Genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961807 Modeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients
Authors: Paola Lecca, Lorenzo Dematte, Corrado Priami
Abstract:
The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic cells. In this work a mathematical treatment of diffusion that can be incorporated in a stochastic algorithm simulating the dynamics of a reaction-diffusion system is presented. The movement of a molecule A from a region i to a region j of the space is represented as a first order reaction Ai k- ! Aj , where the rate constant k depends on the diffusion coefficient. The diffusion coefficients are modeled as function of the local concentration of the solutes, their intrinsic viscosities, their frictional coefficients and the temperature of the system. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the intrinsic reaction kinetics and diffusion dynamics. To demonstrate the method the simulation results of the reaction-diffusion system of chaperoneassisted protein folding in cytoplasm are shown.
Keywords: Reaction-diffusion systems, diffusion coefficient, stochastic simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532