Search results for: radial basic function neural networks.
3369 Condition Monitoring for Controlling the Stability of the Rotating Machinery
Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir
Abstract:
In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The global measurement and analysis of vibration on the cement separator RC500 is carried, the points of measurement used are radial dots, vertical, horizontal and oblique. The measures of trends and spectral analysis for reconnaissance of the main anomalies, the main defects in the separator and manifestation, the results prove that the defects effect has a negative effect on the stability of the rotor. Experimentally the study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances and various excitations.Keywords: Rotor, experimental, defect, frequency, specter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17563368 Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness
Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura
Abstract:
This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.
Keywords: Adaptive Impedance Control, Function Approximation Technique (FAT), unknown time-varying environment position and stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21523367 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14143366 On the Analysis of Bandwidth Management for Hybrid Load Balancing Scheme in WLANs
Authors: Chutima Prommak, Airisa Jantaweetip
Abstract:
In wireless networks, bandwidth is scare resource and it is essential to utilize it effectively. This paper analyses effects of using different bandwidth management techniques on the network performances of the Wireless Local Area Networks (WLANs) that use hybrid load balancing scheme. In particular, we study three bandwidth management schemes, namely Complete Sharing (CS), Complete Partitioning (CP), and Partial Sharing (PS). Performances of these schemes are evaluated by simulation experiments in term of percentage of network association blocking. Our results show that the CS scheme can provide relatively low blocking percentage in various network traffic scenarios whereas the PS scheme can enhance quality of services of the multimedia traffic with rather small expenses on the blocking percentage of the best effort traffic.
Keywords: Bandwidth management, Load Balancing, WLANs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14633365 Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory
Authors: Xinde Li, Xinhan Huang, Min Wang
Abstract:
In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together.
Keywords: Map building, DSmT, DST, uncertainty, information fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19403364 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.
Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13653363 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities
Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper
Abstract:
In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.
Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12943362 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control
Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon
Abstract:
Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.Keywords: Battery Energy Storage System, electrical network frequency stability, frequency control unit, PowerFactory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8053361 The Role of Internal Function of Organization for The Successful Implementation of Good Corporate Governance
Authors: Aries Susanty
Abstract:
The inability to implement the principles of good corporate governance (GCG) as demonstrated in the surveys is due to a number of constraints which can be classified into three; namely internal constraints, external constraints, and constraints coming from the structure of ownership. The issues in the internal constraints mentioned are related to the function of several elements of the company. As a business organization, corporation is unable to achieve its goal to successfully implement GCG principles since it is not support by its internal elements- functions. Two of several numbers of internal elements of a company are ethical work climate and leadership style of the top management. To prove the correlation between internal function of organization (in this case ethical work climate and transformational leadership) and the successful implementation of GCG principles, this study proposes two hypotheses to be empirically tested on thirty surveyed organizations; eleven of which are state-owned companies and nineteen are private companies. These thirty corporations are listed in the Jakarta Stock Exchange. All state-owned companies in the samples are those which have been privatized. The research showed that internal function of organization give support to the successful implementation of GCG principle. In this research we can prove that : (i) ethical work climate has positive significance of correlation with the successful implementation of social awareness principle (one of principles on GCG) and, (ii) only at the state-owned companies, transformational leadership have positive significance effect to forming the ethical work climate.Keywords: Good Corporate Governance Principles, Ethical Work Climate, Transformational Leadership
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14763360 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions
Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier
Abstract:
Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.
Keywords: Ice slurry, propylene-glycol, ethylene-glycol, rheology, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11273359 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.
Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25063358 Mobility Management Architecture for Transport System
Authors: DaeWon Lee, HeonChang Yu
Abstract:
Next generation wireless/mobile networks will be IP based cellular networks integrating the internet with cellular networks. In this paper, we propose a new architecture for a high speed transport system and a mobile management protocol for mobile internet users in a transport system. Existing mobility management protocols (MIPv6, HMIPv6) do not consider real world fast moving wireless hosts (e.g. passengers in a train). For this reason, we define a virtual organization (VO) and proposed the VO architecture for the transport system. We also classify mobility as VO mobility (intra VO) and macro mobility (inter VO). Handoffs in VO are locally managed and transparent to the CH while macro mobility is managed with Mobile IPv6. And, from the features of the transport system, such as fixed route and steady speed, we deduce the movement route and the handoff disruption time of each handoff. To reduce packet loss during handoff disruption time, we propose pre-registration scheme using pre-registration. Moreover, the proposed protocol can eliminate unnecessary binding updates resulting from sequence movement at high speed. The performance evaluations demonstrate our proposed protocol has a good performance at transport system environment. Our proposed protocol can be applied to the usage of wireless internet on the train, subway, and high speed train.
Keywords: Binding update, HMIPv6, packet loss, transport system, virtual organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14893357 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38013356 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning
Authors: Sumitra Nuanmeesri
Abstract:
The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.
Keywords: Blended Learning, New Media, Infrastructure and Computer Network, Tele-Education, Online Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20253355 Traffic Signs
Authors: A. Gutiérrez, A. Castillo, J. M. Gómez, J. M. Gutiérrez, A. García-Cabot
Abstract:
Road signs are the elements of roads with a lot of influence in driver-s behavior. So that signals can fulfill its function, they must overcome visibility and durability requirements, particularly needed at night, when the coefficient of retroreflection becomes a decisive factor in ensuring road safety. Accepting that the visibility of the signage has implications for people-s safety, we understand the importance to fulfill its function: to foster the highest standards of service and safety in drivers. The usual conditions of perception of any sign are determined by: age of the driver, reflective material, luminosity, vehicle speed and emplacement. In this way, this paper evaluates the different signals to increase the safety road.Keywords: Luminosity, orientation, retroreflection, traffic signs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16563354 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.
Keywords: Artificial Neural Network, Double Stranded RNA, RNA Interference, Short Interfering RNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26673353 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.
Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4493352 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: Saltatory conduction, action potential, myelinated compartments, nonlinear, Ranvier nodes, reduced order models, POD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8463351 Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier
Authors: Kadam Bhambri, Neena Gupta
Abstract:
All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin.Keywords: All optical wavelength conversion, dispersion managed solitons, semiconductor optical amplifier, cross gain modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13923350 Definition, Structure and Core Functions of the State Image
Authors: Rosa Nurtazina, Yerkebulan Zhumashov, Maral Tomanova
Abstract:
Humanity is entering an era when "virtual reality" as the image of the world created by the media with the help of the Internet does not match the reality in many respects, when new communication technologies create a fundamentally different and previously unknown "global space". According to these technologies, the state begins to change the basic technology of political communication of the state and society, the state and the state. Nowadays image of the state becomes the most important tool and technology.
Image is a purposefully created image granting political object (person, organization, country, etc.) certain social and political values and promoting more emotional perception.
Political image of the state plays an important role in international relations. The success of the country's foreign policy, development of trade and economic relations with other countries depends on whether it is positive or negative. Foreign policy image has an impact on political processes taking place in the state: the negative image of the country's can be used by opposition forces as one of the arguments to criticize the government and its policies.
Keywords: Image of the country, country's image classification, function of the country image, country's image components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37523349 Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network
Authors: M. Mahdavi, M. Ismail, K. Jumari, Z. M. Hanapi
Abstract:
For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.
Keywords: Wireless sensor networks, energy efficient network, performance analysis, network coverage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13113348 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.
Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29583347 Performance Analysis of Cellular Wireless Network by Queuing Priority Handoff calls
Authors: Raj Kumar Samanta, Partha Bhattacharjee Gautam Sanyal
Abstract:
In this paper, a mathematical model is proposed to estimate the dropping probabilities of cellular wireless networks by queuing handoff instead of reserving guard channels. Usually, prioritized handling of handoff calls is done with the help of guard channel reservation. To evaluate the proposed model, gamma inter-arrival and general service time distributions have been considered. Prevention of some of the attempted calls from reaching to the switching center due to electromagnetic propagation failure or whimsical user behaviour (missed call, prepaid balance etc.), make the inter-arrival time of the input traffic to follow gamma distribution. The performance is evaluated and compared with that of guard channel scheme.Keywords: Cellular wireless networks, non-classical traffic, mathematicalmodel, guard channel, queuing, handoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23933346 A Computational Stochastic Modeling Formalism for Biological Networks
Authors: Werner Sandmann, Verena Wolf
Abstract:
Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.
Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15803345 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization
Authors: Mohamed Othmani, Yassine Khlifi
Abstract:
This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.Keywords: 3D object, optimization, parametrization, Polywog wavelets, reconstruction, wavelet networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15023344 Spanning Tree Transformation of Connected Graphs into Single-Row Networks
Authors: S.L. Loh, S. Salleh, N.H. Sarmin
Abstract:
A spanning tree of a connected graph is a tree which consists the set of vertices and some or perhaps all of the edges from the connected graph. In this paper, a model for spanning tree transformation of connected graphs into single-row networks, namely Spanning Tree of Connected Graph Modeling (STCGM) will be introduced. Path-Growing Tree-Forming algorithm applied with Vertex-Prioritized is contained in the model to produce the spanning tree from the connected graph. Paths are produced by Path-Growing and they are combined into a spanning tree by Tree-Forming. The spanning tree that is produced from the connected graph is then transformed into single-row network using Tree Sequence Modeling (TSM). Finally, the single-row routing problem is solved using a method called Enhanced Simulated Annealing for Single-Row Routing (ESSR).Keywords: Graph theory, simulated annealing, single-rowrouting and spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17373343 Computer-Aided Analysis of Flow in a Rotating Single Disk
Authors: Mohammad Shanbghazani, Vahid Heidarpour, Iraj Mirzaee
Abstract:
In this study a two dimensional axisymmetric, steady state and incompressible laminar flow in a rotating single disk is numerically investigated. The finite volume method is used for solving the momentum equations. The numerical model and results are validated by comparing it to previously reported experimental data for velocities, angles and moment coefficients. It is demonstrated that increasing the axial distance increases the value of axial velocity and vice versa for tangential and total velocities. However, the maximum value of nondimensional radial velocity occurs near the disk wall. It is also found that with increase rotational Reynolds number, moment coefficient decreases.Keywords: Rotating disk, Laminar flow, Numerical, Momentum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15843342 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks
Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.
Abstract:
The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.Keywords: Clusters, fuzzy and optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15703341 Effect of Leaf Essential Oil of Citrus sinensis at Different Harvest Time on Some Liver and Kidney Function Indices of Diabetic Rats
Authors: O. Soji-Omoniwa, N. O. Muhammad, L. A. Usman, B. P. Omoniwa
Abstract:
This study was conducted to investigate the effect of the leaf essential oil of C. sinensis harvested at 7.00a.m and 4.00p.m on some Liver and Kidney function indices of diabetic rats as well as investigate the effect of time of harvest on the observed effect. Experimental animals were divided into 4 groups (A, B, C and D). Diabetes mellitus was induced in all animals, except the normal control group (Group A), by injecting 150mg/kg body weight of alloxan monohydrate intraperitoneally. Group A received distilled water while group B (diabetic control group) was not treated. Group C and D were treated with leaf essential oil of C. sinensis harvested at 7.00 a.m and 4.00p.m respectively at a dose of 110 mg/kg body weight every other day for 15 days. Alkaline phosphatase (ALP), Alanine Transaminase (ALT) and Aspartate Transaminase (AST) activity was evaluated in the serum, Liver and Kidney of studied animals. Total and Direct Bilirubin level, Total Protein and Globulin, Creatinine and Urea level were also evaluated. Result showed that creatinine and urea, serum ALP, AST and ALT levels was significantly reduced (p < 0.05), while the levels of total Protein and Globulin increased significantly (p < 0.05) for the treated animals compared to the diabetic control group. In conclusion, the leaf essential oil of Citrus sinensis ameliorated the impaired renal and liver function; however, the time of harvest of the leaf does not significantly affect its ameliorative effect.
Keywords: C. sinensis, Function indices, Harvest time, Leaf essential oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25123340 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms
Authors: M. A. Rubio, A. Urquia
Abstract:
Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.Keywords: Optimization, sensitivity, genetic algorithms, model calibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474