Search results for: Real Coded Genetic Algorithm
3531 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.
Keywords: Neural networks, pattern learning, security, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13033530 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17923529 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.
Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23343528 Performance Improvements of DSP Applications on a Generic Reconfigurable Platform
Authors: Michalis D. Galanis, Gregory Dimitroulakos, Costas E. Goutis
Abstract:
Speedups from mapping four real-life DSP applications on an embedded system-on-chip that couples coarsegrained reconfigurable logic with an instruction-set processor are presented. The reconfigurable logic is realized by a 2-Dimensional Array of Processing Elements. A design flow for improving application-s performance is proposed. Critical software parts, called kernels, are accelerated on the Coarse-Grained Reconfigurable Array. The kernels are detected by profiling the source code. For mapping the detected kernels on the reconfigurable logic a prioritybased mapping algorithm has been developed. Two 4x4 array architectures, which differ in their interconnection structure among the Processing Elements, are considered. The experiments for eight different instances of a generic system show that important overall application speedups have been reported for the four applications. The performance improvements range from 1.86 to 3.67, with an average value of 2.53, compared with an all-software execution. These speedups are quite close to the maximum theoretical speedups imposed by Amdahl-s law.Keywords: Reconfigurable computing, Coarse-grained reconfigurable array, Embedded systems, DSP, Performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14893527 Using Radial Basis Function Neural Networks to Calibrate Water Quality Model
Authors: Lihui Ma, Kunlun Xin, Suiqing Liu
Abstract:
Modern managements of water distribution system (WDS) need water quality models that are able to accurately predict the dynamics of water quality variations within the distribution system environment. Before water quality models can be applied to solve system problems, they should be calibrated. Although former researchers use GA solver to calibrate relative parameters, it is difficult to apply on the large-scale or medium-scale real system for long computational time. In this paper a new method is designed which combines both macro and detailed model to optimize the water quality parameters. This new combinational algorithm uses radial basis function (RBF) metamodeling as a surrogate to be optimized for the purpose of decreasing the times of time-consuming water quality simulation and can realize rapidly the calibration of pipe wall reaction coefficients of chlorine model of large-scaled WDS. After two cases study this method is testified to be more efficient and promising, and deserve to generalize in the future.Keywords: Metamodeling, model calibration, radial basisfunction, water distribution system, water quality model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20223526 Enumerative Search for Crane Schedule in Anodizing Operations
Authors: Kanate Pantusavase, Jaramporn Hassamontr
Abstract:
This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times.Keywords: Crane scheduling, anodizing operations, cycle time minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15083525 New Multipath Node-Disjoint Routing Based on AODV Protocol
Authors: V. Zangeneh, S. Mohammadi
Abstract:
Today, node-disjoint routing becomes inessential technique in communication of packets among various nodes in networks. Meanwhile AODV (Ad Hoc On-demand Multipath Distance Vector) creates single-path route between a pair of source and destination nodes. Some researches has done so far to make multipath node-disjoint routing based on AODV protocol. But however their overhead and end-to-end delay are relatively high, while the detail of their code is not available too. This paper proposes a new approach of multipath node-disjoint routing based on AODV protocol. Then the algorithm of analytical model is presented. The extensive results of this algorithm will be presented in the next paper.Keywords: AODV; MANET; Multipath Routing; Node-disjoint;transmission delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30743524 Feature Point Reduction for Video Stabilization
Authors: Theerawat Songyot, Tham Manjing, Bunyarit Uyyanonvara, Chanjira Sinthanayothin
Abstract:
Corner detection and optical flow are common techniques for feature-based video stabilization. However, these algorithms are computationally expensive and should be performed at a reasonable rate. This paper presents an algorithm for discarding irrelevant feature points and maintaining them for future use so as to improve the computational cost. The algorithm starts by initializing a maintained set. The feature points in the maintained set are examined against its accuracy for modeling. Corner detection is required only when the feature points are insufficiently accurate for future modeling. Then, optical flows are computed from the maintained feature points toward the consecutive frame. After that, a motion model is estimated based on the simplified affine motion model and least square method, with outliers belonging to moving objects presented. Studentized residuals are used to eliminate such outliers. The model estimation and elimination processes repeat until no more outliers are identified. Finally, the entire algorithm repeats along the video sequence with the points remaining from the previous iteration used as the maintained set. As a practical application, an efficient video stabilization can be achieved by exploiting the computed motion models. Our study shows that the number of times corner detection needs to perform is greatly reduced, thus significantly improving the computational cost. Moreover, optical flow vectors are computed for only the maintained feature points, not for outliers, thus also reducing the computational cost. In addition, the feature points after reduction can sufficiently be used for background objects tracking as demonstrated in the simple video stabilizer based on our proposed algorithm.
Keywords: background object tracking, feature point reduction, low cost tracking, video stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17673523 Capacity and Performance Analysis of Space-Time Block Coded MIMO-OFDM Systems over Rician Fading Channel
Authors: Imran Khan, Shujaat Ali Khan Tanoli, Nandana Rajatheva
Abstract:
This paper presents an analysis on the capacity and performance of MIMO-OFDM systems. The work is focused on the capacity of MIMO-OFDM systems over rician fading channel, in the case of the channel being known at the receiver only, which is more practical case of the channel. Simple expression for capacity is derived for the case of correlated rician fading. The performance of some MIMO-OFDM implementations with rician fading model is presented using an Alamouti coding scheme and Simulation results are obtained for both capacity and performance analysis.
Keywords: MIMO, OFDM, rician distribution, space time blockcodes (STBC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21063522 Efficient Broadcasting in Wireless Sensor Networks
Authors: Min Kyung An, Hyuk Cho
Abstract:
In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.Keywords: Broadcast, collision-free, directional antenna, approximation, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11523521 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19583520 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.
Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18703519 Self-tuned LMS Algorithm for Sinusoidal Time Delay Tracking
Authors: Jonah Gamba
Abstract:
In this paper the problem of estimating the time delay between two spatially separated noisy sinusoidal signals by system identification modeling is addressed. The system is assumed to be perturbed by both input and output additive white Gaussian noise. The presence of input noise introduces bias in the time delay estimates. Normally the solution requires a priori knowledge of the input-output noise variance ratio. We utilize the cascade of a self-tuned filter with the time delay estimator, thus making the delay estimates robust to input noise. Simulation results are presented to confirm the superiority of the proposed approach at low input signal-to-noise ratios.Keywords: LMS algorithm, Self-tuned filter, Systemidentification, Time delay estimation, .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15903518 2D Image Processing for DSO Astrophotography
Authors: R. Suszynski, K. Wawryn, R. Wirski
Abstract:
The new concept of two–dimensional (2D) image processing implementation for auto-guiding system is shown in this paper. It is dedicated to astrophotography and operates with astronomy CCD guide cameras or with self-guided dual-detector CCD cameras and ST4 compatible equatorial mounts. This idea was verified by MATLAB model, which was used to test all procedures and data conversions. Next the circuit prototype was implemented at Altera MAX II CPLD device and tested for real astronomical object images. The digital processing speed of CPLD prototype board was sufficient for correct equatorial mount guiding in real-time system.Keywords: DSO astrophotography, image processing, twodimensionalconvolution method, two-dimensional filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22763517 The Linguistic and Legal Term
Authors: Adam Niewiadomski
Abstract:
The research objective of the project and article “The Linguistic and Legal Term "Real Estate" in the Polish Law and Literature” is characteristic of legal regulations in contemporary countries is the abundance of legal definitions, which are, in fact, formulated separately for the needs of each legal act. This situation does not create favourable conditions for comprehensibility and effectiveness of the law created. The definition mess leads to various interpretations of the same legal circumstances and does not support normal business trading. It needs to be pointed out that using numerous references within a legal act and to other legal acts results in new legal definitions being created for the needs of a given decision by the authority which issues the decision in question. Such interpretation freedom may lead to the law being misused, not to mention being instrumentalised.
Keywords: Real estate, linguistic, legal term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14583516 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.
Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5933515 Novel Security Strategy for Real Time Digital Videos
Authors: Prakash Devale, R. S. Prasad, Amol Dhumane, Pritesh Patil
Abstract:
Now a days video data embedding approach is a very challenging and interesting task towards keeping real time video data secure. We can implement and use this technique with high-level applications. As the rate-distortion of any image is not confirmed, because the gain provided by accurate image frame segmentation are balanced by the inefficiency of coding objects of arbitrary shape, with a lot factors like losses that depend on both the coding scheme and the object structure. By using rate controller in association with the encoder one can dynamically adjust the target bitrate. This paper discusses about to keep secure videos by mixing signature data with negligible distortion in the original video, and to keep steganographic video as closely as possible to the quality of the original video. In this discussion we propose the method for embedding the signature data into separate video frames by the use of block Discrete Cosine Transform. These frames are then encoded by real time encoding H.264 scheme concepts. After processing, at receiver end recovery of original video and the signature data is proposed.
Keywords: Data Hiding, Digital Watermarking, video coding H.264, Rate Control, Block DCT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15613514 A Low Cost Knowledge Base System Framework for Design of Deep Drawing Die
Authors: Vishal Naranje, S. Kumar
Abstract:
In this paper a low cost knowledge base system (KBS) framework is proposed for design of deep drawing die and procedure for developing system modules. The task of building the system is structured into different modules for major activities of design of deep drawing die. A manufacturability assessment module of the proposed framework is developed to check the manufacturability of deep drawn parts. The technological knowledge is represented by using IF- THEN rules and it is coded in AutoLISP language. The module is designed to be loaded into the prompt area of AutoCAD. The cost of implementation of proposed system makes it affordable for small and medium scale sheet metal industries.Keywords: Knowledge base system, Deep drawing die, Manufacturability, Sheet metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21203513 A Distance Function for Data with Missing Values and Its Application
Authors: Loai AbdAllah, Ilan Shimshoni
Abstract:
Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.
Keywords: Missing values, Distance metric, Bhattacharyya distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27513512 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran
Authors: Sara Jelodarian
Abstract:
Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.
Keywords: Development, production markets, progress, strategic role, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4993511 Molecular Docking on Recomposed versus Crystallographic Structures of Zn-Dependent Enzymes and their Natural Inhibitors
Authors: Tudor Petreuş, Andrei Neamţu, Cristina Dascălu, Paul Dan Sîrbu, Carmen E. Cotrutz
Abstract:
Matrix metalloproteinases (MMP) are a class of structural and functional related enzymes involved in altering the natural elements of the extracellular matrix. Most of the MMP structures are cristalographycally determined and published in WorldWide ProteinDataBank, isolated, in full structure or bound to natural or synthetic inhibitors. This study proposes an algorithm to replace missing crystallographic structures in PDB database. We have compared the results of a chosen docking algorithm with a known crystallographic structure in order to validate enzyme sites reconstruction there where crystallographic data are missing.Keywords: matrix metalloproteinases, molecular docking, structure superposition, surface complementarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16103510 Analytical Comparison of Conventional Algorithms with Vedic Algorithm for Digital Multiplier
Authors: Akhilesh G. Naik, Dipankar Pal
Abstract:
In today’s scenario, the complexity of digital signal processing (DSP) applications and various microcontroller architectures have been increasing to such an extent that the traditional approaches to multiplier design in most processors are becoming outdated for being comparatively slow. Modern processing applications require suitable pipelined approaches, and therefore, algorithms that are friendlier with pipelined architectures. Traditional algorithms like Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda architectures have been proven to be comparatively slow for pipelined architectures. These architectures, therefore, need to be optimized or combined with other architectures amongst them to enhance its performances and to be made suitable for pipelined hardware/architectures. Recently, Vedic algorithm mathematically has proven to be efficient by appearing to be less complex and with fewer steps for its output establishment and have assumed renewed importance. This paper describes and shows how the Vedic algorithm can be better suited for pipelined architectures and also can be combined with traditional architectures and algorithms for enhancing its ability even further. In this paper, we also established that for complex applications on DSP and other microcontroller architectures, using Vedic approach for multiplication proves to be the best available and efficient option.
Keywords: Wallace tree, Radix-4 Booth, Radix-8 Booth, Dadda, Vedic, Single-Stage Karatsuba, Looped Karatsuba.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8353509 Protecting the Privacy and Trust of VIP Users on Social Network Sites
Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi
Abstract:
There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.
Keywords: Social Network Sites, Online Social Network, Privacy, Trust, Security and Authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37803508 Development a Recommendation Library System Based On Android Application
Authors: Kunyanuth Kularbphettong, Kunnika Tenprakhon, Pattarapan Roonrakwit
Abstract:
In this paper, we present a recommendation library application on Android system. The objective of this system is to support and advice user to use library resources based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on under association rules, Apriori algorithm. In this project, it was divided the result by the research purposes into 2 parts: developing the Mobile application for online library service and testing and evaluating the system. Questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory both specialists and users.
Keywords: Online library, Apriori algorithm, android application, black box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40133507 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26983506 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.
Keywords: Business processes, discrete-event simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15643505 A Distributed Algorithm for Intrinsic Cluster Detection over Large Spatial Data
Authors: Sauravjyoti Sarmah, Rosy Das, Dhruba Kr. Bhattacharyya
Abstract:
Clustering algorithms help to understand the hidden information present in datasets. A dataset may contain intrinsic and nested clusters, the detection of which is of utmost importance. This paper presents a Distributed Grid-based Density Clustering algorithm capable of identifying arbitrary shaped embedded clusters as well as multi-density clusters over large spatial datasets. For handling massive datasets, we implemented our method using a 'sharednothing' architecture where multiple computers are interconnected over a network. Experimental results are reported to establish the superiority of the technique in terms of scale-up, speedup as well as cluster quality.Keywords: Clustering, Density-based, Grid-based, Adaptive Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15983504 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.
Keywords: Long-short-term memory, re-identification, security critical application, spatial-temporal awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5323503 Some Computational Results on MPI Parallel Implementation of Dense Simplex Method
Authors: El-Said Badr, Mahmoud Moussa, Konstantinos Paparrizos, Nikolaos Samaras, Angelo Sifaleras
Abstract:
There are two major variants of the Simplex Algorithm: the revised method and the standard, or tableau method. Today, all serious implementations are based on the revised method because it is more efficient for sparse linear programming problems. Moreover, there are a number of applications that lead to dense linear problems so our aim in this paper is to present some computational results on parallel implementation of dense Simplex Method. Our implementation is implemented on a SMP cluster using C programming language and the Message Passing Interface MPI. Preliminary computational results on randomly generated dense linear programs support our results.Keywords: Linear Programming, MPI, Parallel Implementation, Simplex Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20493502 Approximating Maximum Weighted Independent Set Using Vertex Support
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034