Search results for: Relationship Network
2252 Dependency Theory on Examining the Relationship between the United States and the Middle East: In the Case of Iran, Saudi Arabia, and Turkey
Authors: Abdelhafez Abdel Hafez
Abstract:
Dependency theory was developed since 1950s, with economic concerns. It divided the world into two parts, the states of the peripheral (third world countries) and the states of the core (the developed capitalist countries). Another perspective developed to the theory with the implementation of the idea of semi-peripheral states in the new world order. With these divisions (core, peripheral, semi-peripheral) this study aims to develop a concept from the perspective of dependency theory, to understand the nature of the relationship of the U.S. with the Middle East Regions through its relation with Iran, Saudi Arabia, and Turkey. The tested countries (Saudi Arabia, Iran and Turkey) are seeking a foothold and influential role in the region. The paper argued that the U.S. directs its policies toward the region, in the way to guarantee no country of the region will be in semi-peripheral level (that could create competitions or danger on the U.S. interest). Therefore, U.S. policies in the region have varied from declaring war to diplomatic channels and sometimes ignoring. The paper is based on the dependency theory, and other international relations theories used to study the Middle East in the international context.
Keywords: Dependency, hegemony, imperialism, Middle East.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5492251 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics
Authors: Bharathi P. T, P. Subashini
Abstract:
Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.
Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29092250 Bayesian Belief Networks for Test Driven Development
Authors: Vijayalakshmy Periaswamy S., Kevin McDaid
Abstract:
Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18872249 Analyzing the Perceived Relationship between Motivation and Satisfaction for Rural Tourists in a Digital World
Authors: N. P. Tsephe, S. D. Eyono Obono
Abstract:
Rural tourism is usually associated with rural development because it has strong linkages to rural resources; but it remains underdeveloped compared to urban tourism. This underdevelopment of rural tourism serves as a motivation for this study whose aim is to examine the factors affecting the perceived satisfaction of rural tourists. The objectives of this study are: to identify and design theories and models on rural tourism satisfaction, and to empirically validate these models and theories through a survey of tourists from the Malealea Lodge which is located in the Mafeteng District, in the Mountain Kingdom of Lesotho. Data generated by the collection of questionnaires used by this survey was analyzed quantitatively using descriptive statistics and correlations in SPSS after checking the validity and the reliability of the questionnaire. The main hypothesis behind this study is the relationship between the demographics of rural tourists, their motivation, and their satisfaction, as supported by existing literature; except that motivation is measured in this study according to three dimensions: push factors, pull factors, and perceived usefulness of ICTs in the rural tourism experience. Findings from this study indicate that among the demographics factors, continent of origin and marital status influence the satisfaction of rural tourists; and their occupation affects their perceptions on the use of ICTs in rural tourism. Moreover, only pull factors were found to influence the satisfaction of rural tourists.
Keywords: Digital world, Motivation, Rural tourism, Satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19442248 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27622247 Improvement of Voltage Profile of Grid Integrated Wind Distributed Generation by SVC
Authors: Fariba Shavakhi Zavareh, Hadi Fotoohabadi, Reza Sedaghati
Abstract:
Due to the continuous increment of the load demand, identification of weaker buses, improvement of voltage profile and power losses in the context of the voltage stability problems has become one of the major concerns for the larger, complex, interconnected power systems. The objective of this paper is to review the impact of Flexible AC Transmission System (FACTS) controller in Wind generators connected electrical network for maintaining voltage stability. Wind energy could be the growing renewable energy due to several advantages. The influence of wind generators on power quality is a significant issue; non uniform power production causes variations in system voltage and frequency. Therefore, wind farm requires high reactive power compensation; the advances in high power semiconducting devices have led to the development of FACTS. The FACTS devices such as for example SVC inject reactive power into the system which helps in maintaining a better voltage profile. The performance is evaluated on an IEEE 14 bus system, two wind generators are connected at low voltage buses to meet the increased load demand and SVC devices are integrated at the buses with wind generators to keep voltage stability. Power flows, nodal voltage magnitudes and angles of the power network are obtained by iterative solutions using MIPOWER.Keywords: Voltage Profile, FACTS Device, SVC, Distributed Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26632246 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9532245 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach
Authors: Okezie A. Ihugba
Abstract:
The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bound tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between log of electricity consumption (LELC) and log of manufacturing value added (LMVA) is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.
Keywords: ARDL, cointegration, Nigeria's manufacturing, electricity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3952244 Telecommunications Access, Social Capital and Sustainable Development
Authors: Susan.Bandias
Abstract:
This paper examines the role of telecommunications in sustainable development of urban, rural and remote communities in the Northern Territory of Australia through the theoretical lens of Social Capital. Social Capital is a relatively new construct and is rapidly gaining interest among policy makers, politicians and researchers as a means to both describe and understand social and economic development. Increasingly, the concept of Social Capital, as opposed to the traditional economic indicators, is seen as a more accurate measure of well-being. Whilst the essence of Social Capital is quality social relations, the concept intersects with telecommunications and Information Communications Technology (ICT) in a number of ways. The potential of ICT to disseminate information quickly, to reach vast numbers of people simultaneously and to include the previously excluded, is immense. However, the exact nature of the relationship is not clearly defined. This paper examines the nexus between social relations of mutual benefit, telecommunications access and sustainable development. A mixed methodological approach was used to test the hypothesis that No relationship exists between Social Capital and access to telecommunications services and facilities. Four communities, which included two urban, a rural and a remote Indigenous community in the Northern Territory of Australia are the focus of this research paper.
Keywords: Indigenous disadvantage, Social Capital, sustainable development, telecommunications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16382243 The Dilemma of Retention in the Context of Rapidly Growing Economies Based on the Effectiveness of HRM Policies: A Case Study of Qatar
Authors: A. Qayed Al-Emadi, C. Schwabenland, B. Czarnecka
Abstract:
In 2009, the new HRM policy was implemented in Qatar for public sector organisations. The purpose of this research is to examine how Qatar’s 2009 HRM policy was significant in influencing employee retention in public organisations. The conducted study utilised quantitative methodology to analyse the data on employees’ perceptions of such HRM practices as Performance Management, Rewards and Promotion, Training and Development associated with the HRM policy in public organisations in comparison to semi-private organisations. Employees of seven public and semi-private organisations filled in the questionnaire based on the 5-point Likert scale to present quantitative results. The data was analysed with the correlation and multiple regression statistical analyses. It was found that Performance Management had the relationship with Employee Retention, and Rewards and Promotion influenced Job Satisfaction in public organisations. Relationship between Job Satisfaction and Employee Retention was also observed. However, no significant differences were observed in the role of HRM practices in public and semi-private organisations.Keywords: Performance management, rewards, promotion, training and development, job satisfaction, employee retention, SHRM, configurationally perspective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27092242 Lean Environmental Management Integration System (LEMIS) Framework Development
Authors: Puvanasvaran, A. P., Suresh V., N. Norazlin
Abstract:
The Lean Environmental Management Integration System (LEMIS) framework development is integration between lean core element and ISO 14001. The curiosity on the relationship between continuous improvement and sustainability of lean implementation has influenced this study toward LEMIS. Characteristic of ISO 14001 standard clauses and core elements of lean principles are explored from past studies and literature reviews. Survey was carried out on ISO 14001 certified companies to examine continual improvement by implementing the ISO 14001 standard. The study found that there is a significant and positive relationship between Lean Principles: value, value stream, flow, pull and perfection with the ISO 14001 requirements. LEMIS is significant to support the continuous improvement and sustainability. The integration system can be implemented to any manufacturing company. It gives awareness on the importance on why organizations need to sustain its environmental management system. In the meantime, the lean principle can be adapted in order to streamline daily activities of the company. Throughout the study, it had proven that there is no sacrifice or trade-off between lean principles with ISO 14001 requirements. The framework developed in the study can be further simplified in the future, especially the method of crossing each sub requirements of ISO 14001 standard with the core elements of Lean principles in this study.
Keywords: LEMIS, ISO 14001, integration, framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23842241 Swiss Scientific Society for Developing Countries: A Concept of Relationship
Authors: Jawad Alzeer
Abstract:
Cultural setup is varied from country to country and nation to nation, but the ability to adapt successfully to the new cultural setup may pave the way toward the development of cultural intelligence. Overcoming differences may require to build up our personality with the ability to learn, exchange thoughts, and have a constructive dream. Adaptation processes can be accelerated if we effectively utilize our cultural diversity. This can be done through a unified body or society; people with common goals can collectively work to satisfy their values. Narrowing the gap between developed and developing countries is of prime importance. Many international organizations are trying to resolve these issues by rational and peaceful means. Failing to understand the cultural differences, mentalities, strengths and weaknesses of developed and developing countries led to the collapse of many partnerships. Establishment of a neutral body influenced by developed countries intellectuality and developing countries personality may offer a better understanding and reasonable solutions, suggestions, advice that may assist in narrowing gaps and promote-strengthening relationship between developed and developing countries. The key issues, goals, and potential concepts associated with initiating Swiss scientific society for developing countries as a model to facilitate integration of highly skilled scientists are discussed.
Keywords: Cultural diversity, developing countries, integration, Switzerland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16232240 Working Motivation Factors Affecting Job Performance Effectiveness
Authors: Supattra Kanchanopast
Abstract:
The purpose of this paper was to study motivation factors affecting job performance effectiveness. This paper drew upon data collected from an Internal Audit Staffs of Internal Audit Line of Head Office of Krung Thai Public Company Limited. Statistics used included frequency, percentage, mean and standard deviation, t-test, and one-way ANOVA test. The finding revealed that the majority of the respondents were female of 46 years of age and over, married and live together, hold a bachelor degree, with an average monthly income over 70,001 Baht. The majority of respondents had over 15 years of work experience. They generally had high working motivation as well as high job performance effectiveness. The hypotheses testing disclosed that employees with different working status had different level of job performance effectiveness at a 0.01 level of significance. Working motivation factors had an effect on job performance in the same direction with high level. Individual working motivation included working completion, reorganization, working progression, working characteristic, opportunity, responsibility, management policy, supervision, relationship with their superior, relationship with co-worker, working position, working stability, safety, privacy, working conditions, and payment. All of these factors related to job performance effectiveness in the same direction with medium level.
Keywords: Internal Audit Staffs, Job Performance Effectiveness, Working Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63852239 The Interplay of Locus of Control, Academic Achievement, and Biological Variables among Iranian Online EFL Learners
Authors: Azizeh Chalak, Niloufar Nasri
Abstract:
Students' academic achievement, along with the effects of different variables, has been a serious concern of educators since long ago. This study was an attempt to investigate the interplay of Locus of Control (LOC), academic achievement and biological variables among Iranian online EFL Learners. The participants of the study included 100 students of different age groups and genders studying English online at Iran Language Institute (ILI), Isfahan, Iran. The instrument used was Trice Academic LOC questionnaire which identifies orientations of internality or externality. The participants' Grade Point Averages (GPAs) were used as the measure of their academic achievement. A series of independent samples ttests were performed on the data. The results of the study showed that (a) there were no significant differences between male and female participants in LOC orientation, (b) there was no relationship between LOC and academic achievement among internal males and females, (c) external females were better achievers than external males, (d) and the age had no significant relationship with LOC and academic achievement. It can be concluded that the social, cultural patterns of genders have changed. This study might help sociologists and psychologists as well as applied linguists in that they reflect the recent social changes and their effects on the LOC and their consequent implications in teaching languages.Keywords: Academic achievement, biological variables, Iranian online EFL learners, locus of control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22572238 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: Malware detection, network security, targeted attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61082237 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15952236 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.
Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12592235 The Role of Acoustical Design within Architectural Design in the Early Design Phase
Authors: O. Wright, N. Perkins, M. Donn, M. Halstead
Abstract:
This research responded to anecdotal evidence that suggested inefficiencies within the Architect and Acoustician relationship may lead to ineffective acoustic design decisions. The acoustician spoken to believed that he was approached too late in the design phase. The approached architect valued acoustical qualities, yet, struggled to interpret common measurement parameters. The preliminary investigation of these opinions indicated a gap in the current New Zealand Architectural discourse and currently informs the creation of a 2016 Master of Architecture (Prof) thesis research. Little meaningful information about acoustic intervention in the early design phase could be found from past literature. In the information that was sourced, authors focus on software as an incorporation tool without investigating why the flaws in the relationship originally exist. To further explore this relationship, a survey was designed. It underwent three phases to ensure its consistency, and was delivered to a group of 51 acousticians from one international Acoustics company. The results were then separated between New Zealand and off-shore to identify trends. The survey results suggest that 75% of acousticians meet the architect less than 5 times per project. Instead of regular contact, a mediated method is adopted though a mix of telecommunication and written reports. Acousticians tend to be introduced later into New Zealand building project than the corresponding off-shore building. This delay corresponds to an increase in remedial action for each of the building types in the survey except Auditoria and Office Buildings. 31 participants have had their specifications challenged by an architect. Furthermore, 71% of the acousticians believe that architects do not have the knowledge to understand why the acoustic specifications are in place. The issues raised in this investigation align to the colloquial evidence expressed by the two consultants. It identifies a larger gap in the industry were acoustics is remedially treated rather than identified as a possible design driver. Further research through design is suggested to understand the role of acoustics within architectural design and potential tools for its inclusion during, not after, the design process.Keywords: Architectural acoustics, early-design, interdisciplinary communication, remedial response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14372234 Role of Social Capital on Consumer Attitudes, Peer Influence and Behavioral Intentions: A Social Media Perspective
Authors: Qazi Mohammed Ahmed, Osman Sadiq Paracha, Iftikhar Hussain
Abstract:
The study aims to explore the unaddressed relationship between social capital and consumers’ underlying behavioral intentions. The study postulates that this association is mediated by the role of attitudes and peer influence. The research attains evidence from a usable sample of 673 responses. The majority consists of the young and energetic social media users of Pakistan that utilize virtual communities as a way of life. A variance based structural equation modeling has been applied through SmartPLS 3. The results reveal that social capital exerts a statistically supportive association with both attitudes and peer influence. Contrastingly, this predictor variable shows an insignificant linkage with behavioral intentions but this relationship is fully mediated by consumer attitudes and peer influence. The paper enhances marketing literature with respect to an unexplored society of Pakistan. It also provides a lens for the contemporary advertisers, in terms of supporting their social media campaigns with affiliative and cohesive elements. The study also identifies a series of predictor variables that could further be tested with attitudes, subjective norms and behavioral responses.Keywords: Behavioral intentions, consumer attitudes, peer influence, social capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5962233 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392232 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications
Authors: Abdulnasir Hossen, Ulrich Heute
Abstract:
In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.
Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16692231 Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud
Authors: N. Mahendran, R. Priya
Abstract:
The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following criteria: 1) The mobile users request the specific data to the cloud based on their present location. 2) Power consumption since most of them are equipped with non-rechargeable batteries. Mostly, the sensors are deployed in hazardous and remote areas. This paper focuses on above observations and introduces an approach known as collaborative location-based sleep scheduling (CLSS) scheme. Both awake and asleep status of each sensor node is dynamically devised by schedulers and the scheduling is done purely based on the of mobile users’ current location; in this manner, large amount of energy consumption is minimized at WSN. CLSS work depends on two different methods; CLSS1 scheme provides lower energy consumption and CLSS2 provides the scalability and robustness of the integrated WSN.
Keywords: Sleep scheduling, mobile cloud computing, wireless sensor network, integration, location, network lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9762230 A Quantitative Tool for Analyze Process Design
Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río
Abstract:
Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.
Keywords: Characteristics matrix, covariance structure analysis, LISREL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15972229 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama
Abstract:
Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.
Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23992228 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.
Keywords: Embankment, ground improvement, modelling, model prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9522227 A 10 Giga VPN Accelerator Board for Trust Channel Security System
Authors: Ki Hyun Kim, Jang-Hee Yoo, Kyo Il Chung
Abstract:
This paper proposes a VPN Accelerator Board (VPN-AB), a virtual private network (VPN) protocol designed for trust channel security system (TCSS). TCSS supports safety communication channel between security nodes in internet. It furnishes authentication, confidentiality, integrity, and access control to security node to transmit data packets with IPsec protocol. TCSS consists of internet key exchange block, security association block, and IPsec engine block. The internet key exchange block negotiates crypto algorithm and key used in IPsec engine block. Security Association blocks setting-up and manages security association information. IPsec engine block treats IPsec packets and consists of networking functions for communication. The IPsec engine block should be embodied by H/W and in-line mode transaction for high speed IPsec processing. Our VPN-AB is implemented with high speed security processor that supports many cryptographic algorithms and in-line mode. We evaluate a small TCSS communication environment, and measure a performance of VPN-AB in the environment. The experiment results show that VPN-AB gets a performance throughput of maximum 15.645Gbps when we set the IPsec protocol with 3DES-HMAC-MD5 tunnel mode.Keywords: TCSS(Trust Channel Security System), VPN(VirtualPrivate Network), IPsec, SSL, Security Processor, Securitycommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20992226 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.
Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8142225 Detecting Earnings Management via Statistical and Neural Network Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: Earnings management, generalized regression neural networks, linear regression, multi-layer perceptron, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21042224 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6532223 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901