Search results for: Bayesian network; structure learning
4957 Blockchain’s Feasibility in Military Data Networks
Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam
Abstract:
Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.Keywords: Blockchain, command & control network, discrete-event simulation, reputation management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8484956 The Visualizer for Real-Time Analysis of Internet Trends
Authors: Radek Malinský, Ivan Jelínek
Abstract:
The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. This kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with a different structure of individual web sites. It is therefore difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.Keywords: Trend, visualizer, web analysis, web 2.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22414955 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: Generic knowledge representation, toolkit, toolroom, pervasive computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20294954 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: Forced convection, Square cylinder, nanofluid, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23634953 Modelling the Occurrence of Defects and Change Requests during User Acceptance Testing
Authors: Kevin McDaid, Simon P. Wilson
Abstract:
Software developed for a specific customer under contract typically undergoes a period of testing by the customer before acceptance. This is known as user acceptance testing and the process can reveal both defects in the system and requests for changes to the product. This paper uses nonhomogeneous Poisson processes to model a real user acceptance data set from a recently developed system. In particular a split Poisson process is shown to provide an excellent fit to the data. The paper explains how this model can be used to aid the allocation of resources through the accurate prediction of occurrences both during the acceptance testing phase and before this activity begins. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23414952 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32814951 Teaching College Classes with Virtual Reality
Authors: Penn P. Wu
Abstract:
Recent advances in virtual reality (VR) technologies have made it possible for students to experience a virtual on-the-scene or virtual in-person observation of an educational event. In an experimental class, the author uses VR, particularly 360° videos, to virtually engage students in an event, through a wide spectrum of educational resources, such s a virtual “bystander.” Students were able to observe the event as if they were physically on site, although they could not intervene with the scene. The author will describe the adopted equipment, specification, and cost of building them as well as the quality of VR. The author will discuss (a) feasibility, effectiveness, and efficiency of using VR as a supplemental technology to teach college students and criteria and methodologies used by the authors to evaluate them; (b) barriers and issues of technological implementation; and (c) pedagogical practices learned through this experiment. The author also attempts to explore (a) how VR could provide an interactive virtual in-person learning experience; (b) how VR can possibly change traditional college education and online education; (c) how educators and balance six critical factors: cost, time, technology, quality, result, and content.
Keywords: Learning with VR, virtual experience of learning, virtual in-person learning, virtual reality for education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11654950 Coupling Concept of two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis
Authors: Luciano Garelli, Marco Schauer, Jorge D’Elia, Mario A. Storti, Sabine C. Langer
Abstract:
This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM a software developed at Centro de Investigaci´on de M´etodos Computacionales –CIMEC. The structural part of the coupled process is computed by the research code elementary Parallel Solver – (ELPASO) of the Technische Universit¨at Braunschweig, Institut f¨ur Konstruktionstechnik (IK).
Keywords: Computational Fluid Dynamics (CFD), Fluid Structure Interaction (FSI), Finite Element Method (FEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19434949 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students
Authors: Sobhy Fathy A. Hashesh
Abstract:
The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.
Keywords: AFC, Lego Education, mechatronics, STEAM, Al-Andalus Fused Curriculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8604948 Distance Transmission Line Protection Based on Radial Basis Function Neural Network
Authors: Anant Oonsivilai, Sanom Saichoomdee
Abstract:
To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.
Keywords: radial basis function neural network, transmission lines protection, relaying, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23644947 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13064946 Online Teaching and Learning Processes: Declarative and Procedural Knowledge
Authors: Eulalia Torras, Andreu Bellot
Abstract:
To know whether students’ achievements are the result of online interaction and not just a consequence of individual differences themselves, it seems essential to link the teaching presence and social presence to the types of knowledge built. The research aim is to analyze the social presence in relation to two types of knowledge, declarative and procedural. Qualitative methodology has been used. The analysis of the contents was based on an observation protocol that included community of enquiry indicators and procedural and declarative knowledge indicators. The research has been conducted in three phases that focused on an observational protocol and indicators, results and conclusions. Results show that the teaching-learning processes have been characterized by the patterns of presence and types of knowledge. Results also show the importance of social presence support provided by the teacher and the students, not only in regard to the nature of the instructional support but also concerning how it is presented to the student and the importance that is attributed to it in the teaching-learning process, that is, what it is that assistance is offered on. In this study, we find that the presence based on procedural guidelines and declarative reflection, the management of shared meaning on the basis of the skills and the evidence of these skills entail patterns of learning. Nevertheless, the importance that the teacher attributes to each support aspect has a bearing on the extent to which the students reflect more on the given task.Keywords: Education, online, teaching and learning processes, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20584945 Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System
Authors: Seyed Hossein Iranmanesh, Mansoureh Zarezadeh
Abstract:
This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.
Keywords: Earned Value Management System (EVMS), Artificial Neural Network (ANN), Estimate At Completion, Forecasting Methods, Project Performance Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27684944 Integrated Method for Detection of Unknown Steganographic Content
Authors: Magdalena Pejas
Abstract:
This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15644943 Search Engine Module in Voice Recognition Browser to Facilitate the Visually Impaired in Virtual Learning (MGSYS VISI-VL)
Authors: Nurulisma Ismail, Halimah Badioze Zaman
Abstract:
Nowadays, web-based technologies influence in people-s daily life such as in education, business and others. Therefore, many web developers are too eager to develop their web applications with fully animation graphics and forgetting its accessibility to its users. Their purpose is to make their web applications look impressive. Thus, this paper would highlight on the usability and accessibility of a voice recognition browser as a tool to facilitate the visually impaired and blind learners in accessing virtual learning environment. More specifically, the objectives of the study are (i) to explore the challenges faced by the visually impaired learners in accessing virtual learning environment (ii) to determine the suitable guidelines for developing a voice recognition browser that is accessible to the visually impaired. Furthermore, this study was prepared based on an observation conducted with the Malaysian visually impaired learners. Finally, the result of this study would underline on the development of an accessible voice recognition browser for the visually impaired.Keywords: Accessibility, Usability, Virtual Learning, Visually Impaired, Voice Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20404942 A Bi-Objective Preventive Healthcare Facility Network Design with Incorporating Cost and Time Saving
Authors: Mehdi Seifbarghy, Keyvan Roshan
Abstract:
Main goal of preventive healthcare problems are at decreasing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. The levels of establishment and staffing costs along with summation of the travel and waiting time that clients spent are considered as objectives functions of the proposed nonlinear integer programming model. In this paper, we have proposed a bi-objective mathematical model for designing a network of preventive healthcare facilities so as to minimize aforementioned objectives, simultaneously. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Finally, to demonstrate performance of the proposed model, four multi-objective decision making techniques are presented to solve the model.Keywords: Preventive healthcare problems, Non-linear integer programming models, Multi-objective decision making techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17704941 A Research on DC Voltage Offsets Generated by PWM-Controlled Inverters
Authors: Marios N. Moschakis
Abstract:
The increasing penetration of Distributed Generation and storage connected to the distribution network via PWM converters increases the possibility of a DC-component (offset) in voltage or current flowing into the grid. This occurs when even harmonics are present in the network voltage. DC-components can affect the operation and safety of several grid components. Therefore, an investigation of the way they are produced is important in order to take appropriate measures for their elimination. Further research on DC-components that appear on output voltage of converters is performed for different parameters of PWM technique and characteristics of even harmonics.
Keywords: Asymmetric even harmonics, DC-offsets, distributed generation, electric machine drive systems, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36854940 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15204939 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences
Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam
Abstract:
The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.Keywords: Learning experiences, innovation, traditional games, trainee teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24434938 Multi-Label Hierarchical Classification for Protein Function Prediction
Authors: Helyane B. Borges, Julio Cesar Nievola
Abstract:
Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.
Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23804937 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive
Authors: K. Jayakumar, S. Thangavel
Abstract:
In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10194936 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options
Authors: Zeynep İltüzer Samur, Gül Tekin Temur
Abstract:
Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.
Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30854935 Early Supplier Involvement in New Product Development: A Casting-Network Collaboration Model
Authors: Taneli Eisto, Venlakaisa Hölttä, Katrine Mahlamäki, Janne Kollanus, Marko Nieminen
Abstract:
Early supplier involvement (ESI) benefits new product development projects several ways. Nevertheless, many castuser companies do not know the advantages of ESI and therefore do not utilize it. This paper presents reasons why to utilize ESI in casting industry and how that can be done. Further, this paper presents advantages and challenges related to ESI in casting industry, and introduces a Casting-Network Collaboration Model. The model presents practices for companies to build advantageous collaborative relationships. More detailed, the model describes three levels for company-network relationships in casting industry with different degrees of collaboration, and requirements for operating in each level. In our research, ESI was found to influence, for example, on project time, component cost, and quality. In addition, challenges related to ESI, such as, a lack of mutual trust and unawareness about the advantages were found. Our research approach was a case study including four cases.Keywords: Casting Industry, Collaboration Model, EarlySupplier Involvement, New Product Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84754934 Predictive Analytics of Student Performance Determinants in Education
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.
Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5494933 Open Educational Resource in Online Mathematics Learning
Authors: Haohao Wang
Abstract:
Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.Keywords: Online learning, Open Educational Resources, Multimedia, Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21154932 A Novel Feedback-Based Integrated FiWi Networks Architecture by Centralized Interlink-ONU Communication
Authors: Noman Khan, B. S. Chowdhry, A.Q.K Rajput
Abstract:
Integrated fiber-wireless (FiWi) access networks are a viable solution that can deliver the high profile quadruple play services. Passive optical networks (PON) networks integrated with wireless access networks provide ubiquitous characteristics for high bandwidth applications. Operation of PON improves by employing a variety of multiplexing techniques. One of it is time division/wavelength division multiplexed (TDM/WDM) architecture that improves the performance of optical-wireless access networks. This paper proposes a novel feedback-based TDM/WDM-PON architecture and introduces a model of integrated PON-FiWi networks. Feedback-based link architecture is an efficient solution to improves the performance of optical-line-terminal (OLT) and interlink optical-network-units (ONUs) communication. Furthermore, the feedback-based WDM/TDM-PON architecture is compared with existing architectures in terms of capacity of network throughput.
Keywords: Fiber-wireless (FiWi), Passive Optical Network (PON), TDM/WDM architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17304931 Endogenous Fantasy – Based Serious Games: Intrinsic Motivation and Learning
Authors: Robert F. Kenny, Glenda A. Gunter
Abstract:
Current technological advances pale in comparison to the changes in social behaviors and 'sense of place' that is being empowered since the Internet made it on the scene. Today-s students view the Internet as both a source of entertainment and an educational tool. The development of virtual environments is a conceptual framework that needs to be addressed by educators and it is important that they become familiar with who these virtual learners are and how they are motivated to learn. Massively multiplayer online role playing games (MMORPGs), if well designed, could become the vehicle of choice to deliver learning content. We suggest that these games, in order to accomplish these goals, must begin with well-established instructional design principles that are co-aligned with established principles of video game design. And have the opportunity to provide an instructional model of significant prescriptive power. The authors believe that game designers need to take advantage of the natural motivation player-learners have for playing games by developing them in such a way so as to promote, intrinsic motivation, content learning, transfer of knowledge, and naturalization.
Keywords: serious games, endogenous fantasy, intrinsic motivation, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22374930 Averaging Mechanisms to Decision Making for Handover in GSM
Authors: S. Akhila, M. Lakshminarayana
Abstract:
In cellular networks, limited availability of resources has to be tapped to its fullest potential. In view of this aspect, a sophisticated averaging and voting technique has been discussed in this paper, wherein the radio resources available are utilized to the fullest value by taking into consideration, several network and radio parameters which decide on when the handover has to be made and thereby reducing the load on Base station .The increase in the load on the Base station might be due to several unnecessary handover taking place which can be eliminated by making judicious use of the radio and network parameters.Keywords: Averaging and Voting, Handover, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35104929 Eye Location Based on Structure Feature for Driver Fatigue Monitoring
Authors: Qiong Wang
Abstract:
One of the most important problems to solve is eye location for a driver fatigue monitoring system. This paper presents an efficient method to achieve fast and accurate eye location in grey level images obtained in the real-word driving conditions. The structure of eye region is used as a robust cue to find possible eye pairs. Candidates of eye pair at different scales are selected by finding regions which roughly match with the binary eye pair template. To obtain real one, all the eye pair candidates are then verified by using support vector machines. Finally, eyes are precisely located by using binary vertical projection and eye classifier in eye pair images. The proposed method is robust to deal with illumination changes, moderate rotations, glasses wearing and different eye states. Experimental results demonstrate its effectiveness.Keywords: eye location, structure feature, driver fatiguemonitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15994928 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.
Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679