Search results for: adaptive learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2711

Search results for: adaptive learning

911 Adaptive Non-linear Filtering Technique for Image Restoration

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil

Abstract:

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
910 Education for Sustainability Using PBL on an Engineering Course at the National University of Colombia

Authors: Hernán G. Cortés-Mora, José I. Péna-Reyes, Alfonso Herrera-Jiménez

Abstract:

This article describes the implementation experience of Project-Based Learning (PBL) in an engineering course of the Universidad Nacional de Colombia, with the aim of strengthening student skills necessary for the exercise of their profession under a sustainability framework. Firstly, we present a literature review on the education for sustainability field, emphasizing the skills and knowledge areas required for its development, as well as the commitment of the Faculty of Engineering of the Universidad Nacional de Colombia, and other engineering faculties of the country, regarding education for sustainability. This article covers the general aspects of the course, describes how students team were formed, and how their experience was during the first semester of 2017. During this period two groups of students decided to develop their course project aiming to solve a problem regarding a Non-Governmental Organization (NGO) that works with head-of-household mothers in a low-income neighborhood in Bogota (Colombia). Subsequently, we show how sustainability is involved in the course, how tools are provided to students, and how activities are developed as to strengthen their abilities, which allows them to incorporate sustainability in their projects while also working on the methodology used to develop said projects. Finally, we introduce the results obtained by the students who sent the prototypes of their projects to the community they were working on and the conclusions reached by them regarding the course experience.

Keywords: Sustainability, project based learning, engineering education, higher education for sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
909 Art Street as a Way for Reflective Thinking in the Field of Adult and Primary Education: Examples of Educational Techniques

Authors: Georgia H. Mega

Abstract:

Street art, a category of artwork displayed in public spaces, has been recognized as a potential tool for promoting reflective thinking in both adult and primary education. Educational techniques that encourage critical and creative thinking, as well as deeper reflection, have been developed and applied in educational curricula. This paper aims to explore the potential of art street in cultivating learners' reflective awareness towards multiculturalism. More specifically, two artworks displayed in public spaces have been selected: the artwork of Kleomenis Kostopoulos and the artwork of Rustam Obic. The reason of this selection is because of their strong symbolism towards multiculturalism. The street arts have been elaborated by adult (+18) and minor students (K-12) in educational settings, under the same educator’s guidance, following appropriate for each age learning techniques. Adults cultivate their reflection using Freire’s learning method, whereas minors cultivate critical thinking using visible thinking techniques from Project Zero. Through qualitative methodology (context analysis) the depth of reflection/critical thinking has been emphasized for both age groups. The case study shows that street art can play a significant role to the promotion/cultivation of deep thinking towards challenging contemporary phenomena like multiculturalism.

Keywords: Street art, observation of art works, reflective awareness, educational techniques, multiculturalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99
908 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
907 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
906 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model

Authors: M. Elkhoury

Abstract:

A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.

Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
905 Blind Image Deconvolution by Neural Recursive Function Approximation

Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu

Abstract:

This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.

Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
904 Digital Learning and Entrepreneurship Education: Changing Paradigms

Authors: Shivangi Agrawal, Hsiu-I Ting

Abstract:

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g. online entrepreneurship education courses and programs) and other digital tools (e.g. digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
903 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: Computing methodologies, interest point, salient region detections, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
902 Progressive Watershed Management Approaches in Iran

Authors: S. H. R. Sadeghi, A. Sadoddin, A. Najafinejad

Abstract:

Expansionism and ever-increasing population menace all different resources worldwide. The issue, hence, is critical in developing countries like Iran where new technologies are rapidly luxuriated and unguardedly applied, resulting in unexpected outcomes. However, uncommon and comprehensive approaches are introduced to take all the different aspects involved into consideration. In the last decade, few approaches such as community-based, stakeholders-oriented, adaptive and ultimately integrated management, have emerged and are developing for efficient, Co-management or best management, economic and sustainable development and management of watershed resources in Iran. In the present paper, an attempt has been made to focus on state-of-the-art approaches for the management of watershed resources applied in Iran. The study has been then supported by reports of some case studies conducted throughout the country involving previously mentioned approaches. Scrutinizing results of the researches verified a progressive tendency of the managerial approaches in watershed management strategies leading to a general approaching balance situation. The approaches are firmly rooted in educational, research, executive, legal and policy-making sectors leading to some recuperation at different levels. However, there is a long way ahead to naturalize detrimental effects of unscientific, illegal and over exploitation of the watershed resources in Iran.

Keywords: Comprehensive management, ecosystem balance, integrated watershed management, land resources optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
901 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding

Authors: S. Shubha, B. N. Meera

Abstract:

Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.

Keywords: Electric Force, Interactive, Representation, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
900 A Bayesian Kernel for the Prediction of Protein- Protein Interactions

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.

Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
899 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
898 An Images Monitoring System based on Multi-Format Streaming Grid Architecture

Authors: Yi-Haur Shiau, Sun-In Lin, Shi-Wei Lo, Hsiu-Mei Chou, Yi-Hsuan Chen

Abstract:

This paper proposes a novel multi-format stream grid architecture for real-time image monitoring system. The system, based on a three-tier architecture, includes stream receiving unit, stream processor unit, and presentation unit. It is a distributed computing and a loose coupling architecture. The benefit is the amount of required servers can be adjusted depending on the loading of the image monitoring system. The stream receive unit supports multi capture source devices and multi-format stream compress encoder. Stream processor unit includes three modules; they are stream clipping module, image processing module and image management module. Presentation unit can display image data on several different platforms. We verified the proposed grid architecture with an actual test of image monitoring. We used a fast image matching method with the adjustable parameters for different monitoring situations. Background subtraction method is also implemented in the system. Experimental results showed that the proposed architecture is robust, adaptive, and powerful in the image monitoring system.

Keywords: Motion detection, grid architecture, image monitoring system, and background subtraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
897 The Index of Sustainable Functionality: An Application for Measuring Sustainability

Authors: G.T. Cirella, L. Tao

Abstract:

The index of sustainable functionality (ISF) is an adaptive, multi-criteria technique that is used to measure sustainability; it is a concept that can be transposed to many regions throughout the world. An ISF application of the Southern Regional Organisation of Councils (SouthROC) in South East Queensland (SEQ) – the fastest growing region in Australia – indicated over a 25 year period an increase of over 10% level of functionality from 58.0% to 68.3%. The ISF of SouthROC utilised methodologies that derived from an expert panel based approach. The overall results attained an intermediate level of functionality which amounted to related concerns of economic progress and lack of social awareness. Within the region, a solid basis for future testing by way of measured changes and developed trends can be established. In this regard as management tool, the ISF record offers support for regional sustainability practice and decision making alike. This research adaptively analyses sustainability – a concept that is lacking throughout much of the academic literature and any reciprocal experimentation. This lack of knowledge base has been the emphasis of where future sustainability research can grow from and prove useful in rapidly growing regions. It is the intentions of this research to help further develop the notions of index-based quantitative sustainability.

Keywords: Environmental engineering, index of sustainable functionality, sustainability indicators, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
896 Toward Strengthening Social Resilience: A Case Study on Recovery of Capture Fisheries after Asia's Tsunami in Aceh, Indonesia

Authors: Zulhamsyah Imran, Masahiro Yamao

Abstract:

Social resilience has role to govern the local community and coastal fisheries resources toward sustainable fisheries development in tsunami affected area. This paper asses, explore and investigates of indigenous institutions, external and internal facilitators toward strengthening social resilience. Identification of the genuine organizations role had been conducted twice by using Rapid Assessment Appraisal, Focus Group Discussion, and in-depth interview for collecting primary and secondary data. Local wisdom had a contribution and adaptable to rebound social resilience. The Panglima Laot Lhok (sea commander) had determined and adapted role on recovery of the fishing community, particularly facilitated aid delivery to fishermen, as shown in anchovy fisheries relief case in Krueng Raya Bay. Toke Bangku (financial trader) had stimulated for reinforcement of advance payment and market channel. The other institutions supported upon linking and bridging connectivity among stakeholders. Collaborative governance can avoid conflict, reduce donor dependency and strengthen social resilience within fishing community.

Keywords: Fishing community, indigenous institution, adaptive role, collaborative, social resilience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
895 Creative Teaching of New Product Development to Operations Managers

Authors: Marco Leite, J. M. Vilas-Boas da Silva, Isabel Duarte de Almeida

Abstract:

New Product Development (NPD) has got its roots on an Engineering background. Thus, one might wonder about the interest, opportunity, contents and delivery process, if students from soft sciences were involved. This paper addressed «What to teach?» and «How to do it?», as the preliminary research questions that originated the introduced propositions. The curriculum-developer model that was purposefully chosen to adapt the coursebook by pursuing macro/micro strategies was found significant by an exploratory qualitative case study. Moreover, learning was developed and value created by implementing the institutional curriculum through a creative, hands-on, experiencing, problem-solving, problem-based but organized teamwork approach. Product design of an orange squeezer complying with ill-defined requirements, including drafts, sketches, prototypes, CAD simulations and a business plan, plus a website, written reports and presentations were the deliverables that confirmed an innovative contribution towards research and practice of teaching and learning of engineering subjects to non-specialist operations managers candidates.

Keywords: Teaching Engineering to Non-specialists, Operations Managers Education, Teamwork, Product Design and Development, Market- driven NPD, Curriculum development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
894 A Formative Assessment Tool for Effective Feedback

Authors: Rami Rashkovits, Ilana Lavy

Abstract:

In this study we present our developed formative assessment tool for students' assignments. The tool enables lecturers to define assignments for the course and assign each problem in each assignment a list of criteria and weights by which the students' work is evaluated. During assessment, the lecturers feed the scores for each criterion with justifications. When the scores of the current assignment are completely fed in, the tool automatically generates reports for both students and lecturers. The students receive a report by email including detailed description of their assessed work, their relative score and their progress across the criteria along the course timeline. This information is presented via charts generated automatically by the tool based on the scores fed in. The lecturers receive a report that includes summative (e.g., averages, standard deviations) and detailed (e.g., histogram) data of the current assignment. This information enables the lecturers to follow the class achievements and adjust the learning process accordingly. The tool was examined on two pilot groups of college students that study a course in (1) Object-Oriented Programming (2) Plane Geometry. Results reveal that most of the students were satisfied with the assessment process and the reports produced by the tool. The lecturers who used the tool were also satisfied with the reports and their contribution to the learning process.

Keywords: Computer-based formative assessment tool, science education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
893 On Determining the Most Effective Technique Available in Software Testing

Authors: Qasim Zafar, Matthew Anderson, Esteban Garcia, Steven Drager

Abstract:

Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. In doing so, this paper presents a method to compare the effectiveness of testing techniques with heterogeneous output metrics. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices.

Keywords: Software testing, software metrics, testing effectiveness, black box testing, random testing, adaptive random testing, combinatorial testing, fuzz testing, equivalence partition, boundary value analysis, white box testings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
892 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia

Authors: Rana M. Zeina, Laila AL-Ayadhi, Shahid Bashir

Abstract:

The association between sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a Neuropsychological Test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/little circle (BLC), Simple Reaction Time (SRT) Intra /Extra dimensional set shift (IED), Spatial recognition memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. ASDs individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to a stimulus.

Keywords: Visual memory, Attention, Autism Spectrum Disorders (ASDs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
891 Alignment between Understanding and Assessment Practice among Secondary School Teachers

Authors: Eftah Bte. Moh @ Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor

Abstract:

This study aimed to identify the alignment of understanding and assessment practices among secondary school teachers. The study was carried out using quantitative descriptive study. The sample consisted of 164 teachers who taught Form 1 and 2 from 11 secondary schools in the district of North Kinta, Perak, Malaysia. Data were obtained from 164 respondents who answered Expectation Alignment Understanding and Practices of School Assessment (PEKDAPS) questionnaire. The data were analysed using SPSS 17.0+. The Cronbach’s alpha value obtained through PEKDAPS questionnaire pilot study was 0.86. The results showed that teachers' performance in PEKDAPS based on the mean value was less than 3, which means that perfect alignment does not occur between the understanding and practices of school assessment. Two major PEKDAPS sub-constructs of articulation across grade and age and usability of the system were higher than the moderate alignment of the understanding and practices of school assessment (Min=2.0). The content focused of PEKDAPs sub-constructs which showed lower than the moderate alignment of the understanding and practices of school assessment (Min=2.0). Another two PEKDAPS subconstructs of transparency and fairness and the pedagogical implications showed moderate alignment (2.0). The implications of the study is that teachers need to fully understand the importance of alignment among components of assessment, learning and teaching and learning objectives as strategies to achieve quality assessment process.

Keywords: Alignment, assessment practices, School Based Assessment, understanding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
890 Matching Pursuit based Removal of Cardiac Pulse-Related Artifacts in EEG/fMRI

Authors: Rainer Schneider, Stephan Lau, Levin Kuhlmann, Simon Vogrin, Maciej Gratkowski, Mark Cook, Jens Haueisen

Abstract:

Cardiac pulse-related artifacts in the EEG recorded simultaneously with fMRI are complex and highly variable. Their effective removal is an unsolved problem. Our aim is to develop an adaptive removal algorithm based on the matching pursuit (MP) technique and to compare it to established methods using a visual evoked potential (VEP). We recorded the VEP inside the static magnetic field of an MR scanner (with artifacts) as well as in an electrically shielded room (artifact free). The MP-based artifact removal outperformed average artifact subtraction (AAS) and optimal basis set removal (OBS) in terms of restoring the EEG field map topography of the VEP. Subsequently, a dipole model was fitted to the VEP under each condition using a realistic boundary element head model. The source location of the VEP recorded inside the MR scanner was closest to that of the artifact free VEP after cleaning with the MP-based algorithm as well as with AAS. While none of the tested algorithms offered complete removal, MP showed promising results due to its ability to adapt to variations of latency, frequency and amplitude of individual artifact occurrences while still utilizing a common template.

Keywords: matching pursuit, ballistocardiogram, artifactremoval, EEG/fMRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
889 A Reusability Evaluation Model for OO-Based Software Components

Authors: Parvinder S. Sandhu, Hardeep Singh

Abstract:

The requirement to improve software productivity has promoted the research on software metric technology. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. CK metric suit is most widely used metrics for the objectoriented (OO) software; we critically analyzed the CK metrics, tried to remove the inconsistencies and devised the framework of metrics to obtain the structural analysis of OO-based software components. Neural network can learn new relationships with new input data and can be used to refine fuzzy rules to create fuzzy adaptive system. Hence, Neuro-fuzzy inference engine can be used to evaluate the reusability of OO-based component using its structural attributes as inputs. In this paper, an algorithm has been proposed in which the inputs can be given to Neuro-fuzzy system in form of tuned WMC, DIT, NOC, CBO , LCOM values of the OO software component and output can be obtained in terms of reusability. The developed reusability model has produced high precision results as expected by the human experts.

Keywords: CK-Metric, ID3, Neuro-fuzzy, Reusability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
888 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers

Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem

Abstract:

As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.

Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254
887 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: credit card fraud detection, user authentication, behavioral biometrics, machine learning, literature survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
886 Lean Manufacturing: Systematic Layout Planning Application to an Assembly Line Layout of a Welding Industry

Authors: Fernando Augusto Ullmann Tobe, Moacyr Amaral Domingues, Figueiredo, Stephany Rie Yamamoto Gushiken

Abstract:

The purpose of this paper is to present the process of elaborating the layout of an assembly line of a welding industry using the principles of lean manufacturing as the main driver. The objective of this paper is relevant since the current layout of the assembly line causes non-productive times for operators, being related to the lean waste of unnecessary movements. The methodology used for the project development was Project-based Learning (PBL), which is an active way of learning focused on real problems. The process of selecting the methodology for layout planning was developed considering three criteria to evaluate the most relevant one for this paper's goal. As a result of this evaluation, Systematic Layout Planning was selected, and three steps were added to it – Value Stream Mapping for the current situation and after layout changed and the definition of lean tools and layout type. This inclusion was to consider lean manufacturing in the layout redesign of the industry. The layout change resulted in an increase in the value-adding time of operations carried out in the sector, reduction in movement times between previous and final assemblies, and in cost savings regarding the man-hour value of the employees, which can be invested in productive hours instead of movement times.

Keywords: Assembly line, layout, lean manufacturing, systematic layout planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
885 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta

Authors: Christiana Gauci-Sciberras

Abstract:

The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.

Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
884 Multi-Enterprise Tie and Co-Operation Mechanism in Mexican Agro Industry SME's

Authors: Tania Elena González Alvarado, Ma. Antonieta Martín Granados

Abstract:

The aim of this paper is to explain what a multienterprise tie is, what evidence its analysis provides and how does the cooperation mechanism influence the establishment of a multienterprise tie. The study focuses on businesses of smaller dimension, geographically dispersed and whose businessmen are learning to cooperate in an international environment. The empirical evidence obtained at this moment permits to conclude the following: The tie is not long-lasting, it has an end; opportunism is an opportunity to learn; the multi-enterprise tie is a space to learn about the cooperation mechanism; the local tie permits a businessman to alternate between competition and cooperation strategies; the disappearance of a tie is an experience of learning for a businessman, diminishing the possibility of failure in the next tie; the cooperation mechanism tends to eliminate hierarchical relations; the multienterprise tie diminishes the asymmetries and permits SME-s to have a better position when they negotiate with large companies; the multi-enterprise tie impacts positively on the local system. The collection of empirical evidence was done trough the following instruments: direct observation in a business encounter to which the businesses attended in 2003 (202 Mexican agro industry SME-s), a survey applied in 2004 (129), a questionnaire applied in 2005 (86 businesses), field visits to the businesses during the period 2006-2008 and; a survey applied by telephone in 2008 (55 Mexican agro industry SME-s).

Keywords: Cooperation, multi-enterprise tie, links, networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
883 Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement

Authors: Goh Yung Hong, Mona Masood

Abstract:

This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.

Keywords: Conventional teaching method, Gamification teaching method, Motivation, Engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5810
882 QoS Expectations in IP Networks: A Practical View

Authors: S. Arrizabalaga, A. Salterain, M. Domínguez, I. Alvaro

Abstract:

Traditionally, Internet has provided best-effort service to every user regardless of its requirements. However, as Internet becomes universally available, users demand more bandwidth and applications require more and more resources, and interest has developed in having the Internet provide some degree of Quality of Service. Although QoS is an important issue, the question of how it will be brought into the Internet has not been solved yet. Researches, due to the rapid advances in technology are proposing new and more desirable capabilities for the next generation of IP infrastructures. But neither all applications demand the same amount of resources, nor all users are service providers. In this way, this paper is the first of a series of papers that presents an architecture as a first step to the optimization of QoS in the Internet environment as a solution to a SMSE's problem whose objective is to provide public service to internet with certain Quality of Service expectations. The service provides new business opportunities, but also presents new challenges. We have designed and implemented a scalable service framework that supports adaptive bandwidth based on user demands, and the billing based on usage and on QoS. The developed application has been evaluated and the results show that traffic limiting works at optimum and so it does exceeding bandwidth distribution. However, some considerations are done and currently research is under way in two basic areas: (i) development and testing new transfer protocols, and (ii) developing new strategies for traffic improvements based on service differentiation.

Keywords: Differentiated Services, Linux, Quality of Service, queueing disciplines, web application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923