Search results for: Particle Swarm Optimization algorithm
3276 Agent-based Framework for Energy Efficiency in Wireless Sensor Networks
Authors: Hongjoong Sin, Jangsoo Lee, Sungju Lee, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim
Abstract:
Wireless sensor networks are consisted of hundreds or thousands of small sensors that have limited resources. Energy-efficient techniques are the main issue of wireless sensor networks. This paper proposes an energy efficient agent-based framework in wireless sensor networks. We adopt biologically inspired approaches for wireless sensor networks. Agent operates automatically with their behavior policies as a gene. Agent aggregates other agents to reduce communication and gives high priority to nodes that have enough energy to communicate. Agent behavior policies are optimized by genetic operation at the base station. Simulation results show that our proposed framework increases the lifetime of each node. Each agent selects a next-hop node with neighbor information and behavior policies. Our proposed framework provides self-healing, self-configuration, self-optimization properties to sensor nodes.Keywords: Agent, Energy Efficiency, Genetic algorithm, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16713275 An Artificial Intelligent Technique for Robust Digital Watermarking in Multiwavelet Domain
Authors: P. Kumsawat, K. Pasitwilitham, K. Attakitmongcol, A. Srikaew
Abstract:
In this paper, an artificial intelligent technique for robust digital image watermarking in multiwavelet domain is proposed. The embedding technique is based on the quantization index modulation technique and the watermark extraction process does not require the original image. We have developed an optimization technique using the genetic algorithms to search for optimal quantization steps to improve the quality of watermarked image and robustness of the watermark. In addition, we construct a prediction model based on image moments and back propagation neural network to correct an attacked image geometrically before the watermark extraction process begins. The experimental results show that the proposed watermarking algorithm yields watermarked image with good imperceptibility and very robust watermark against various image processing attacks.Keywords: Watermarking, Multiwavelet, Quantization index modulation, Genetic algorithms, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20973274 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order
Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi
Abstract:
In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19573273 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa E. Abdallah, Bajes Y. Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.
Keywords: Ant colony-based routing, position-based routing, MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15713272 Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT
Authors: V. Joshi Manohar, P. Sujatha, K. S. R. Anjaneyulu
Abstract:
Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.
Keywords: Cascade H-Bridge Inverter (CHB), Continuous Genetic Algorithm (C-GA), Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Total Harmonic Distortion (%THDv), Wavelet Transform (WT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29243271 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3693270 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9523269 Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment
Authors: Gyo Woo Lee
Abstract:
In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.
Keywords: BET Specific Surface Area, Gamma-Al2O3 Nanoparticles, Flame Synthesis, Phase Transition, X-ray Diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50363268 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: Identification, Hammerstein-Wiener, optimization, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8083267 Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer
Authors: S.M. Bahri, F.T. Bendimerad
Abstract:
We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.Keywords: Adaptive Beamforming, LMS Algorithm, MCCDMA, MIMO System, Smart Antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18393266 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: M. Cermak, T. Karasek, J. Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.
Keywords: Genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23783265 GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System
Authors: M. Elsisi, M. Soliman, M. A. S. Aboelela, W. Mansour
Abstract:
This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.Keywords: Gravitational Search Algorithm (GSA), Load Frequency Control (LFC), Dual Proportional-Integral (DPI) controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19923264 Power Flow Control with UPFC in Power Transmission System
Authors: Samina Elyas Mubeen, R. K. Nema, Gayatri Agnihotri
Abstract:
In this paper the performance of unified power flow controller is investigated in controlling the flow of po wer over the transmission line. Voltage sources model is utilized to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile. This model is incorporated in Newton Raphson algorithm for load flow studies. Simultaneous method is employed in which equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations. It is solved according to the Newton raphson algorithm. Case studies are carried on standard 5 bus network. Simulation is done in Matlab. The result of network with and without using UPFC are compared in terms of active and reactive power flows in the line and active and reactive power flows at the bus to analyze the performance of UPFC.Keywords: Newton-Raphson algorithm, Load flow, Unified power flow controller, Voltage source model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42953263 A Low-cost Reconfigurable Architecture for AES Algorithm
Authors: Yibo Fan, Takeshi Ikenaga, Yukiyasu Tsunoo, Satoshi Goto
Abstract:
This paper proposes a low-cost reconfigurable architecture for AES algorithm. The proposed architecture separates SubBytes and MixColumns into two parallel data path, and supports different bit-width operation for this two data path. As a result, different number of S-box can be supported in this architecture. The throughput and power consumption can be adjusted by changing the number of S-box running in this design. Using the TSMC 0.18μm CMOS standard cell library, a very low-cost implementation of 7K Gates is obtained under 182MHz frequency. The maximum throughput is 360Mbps while using 4 S-Box simultaneously, and the minimum throughput is 114Mbps while only using 1 S-BoxKeywords: AES, Reconfigurable architecture, low cost
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20743262 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes
Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22973261 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.
Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16813260 Impulsive Noise-Resilient Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
We present a new subband adaptive filter (R-SAF) which is robust against impulsive noise in system identification. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion against impulsive noise, the R-SAF comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to the robustness against the impulsive noise and the capable convergence performance. Experimental results clearly demonstrate that the proposed R-SAF outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.Keywords: Subband adaptive filter, L1-norm, system identification, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14773259 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs
Authors: S. Chaisit, H.Y. Kung, N.T. Phuong
Abstract:
Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.
Keywords: BPNs, indoor location, location estimation, intelligent location identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20183258 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang
Abstract:
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.
Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17753257 Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach
Authors: Ejaz Khan, Conor Heneghan
Abstract:
In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.Keywords: Equalizer, target impulse response, convex optimization, matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17173256 Loading Methodology for a Capacity Constrained Job-Shop
Authors: Viraj Tyagi, Ajai Jain, P. K. Jain, Aarushi Jain
Abstract:
This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries.Keywords: Manufacturing planning, loading, genetic algorithm, Job-Shop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15033255 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials
Authors: Pradeep M., N. S. Mahesh, Raja Hussain
Abstract:
Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.
Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51973254 Performance Evaluation of Prioritized Limited Processor-Sharing System
Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi
Abstract:
We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N 3 priority classes.Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11983253 Electrical Impedance Imaging Using Eddy Current
Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo
Abstract:
Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17003252 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16803251 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18713250 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study show that modified equation has good agreement with experimental data.
Keywords: Equation of state, modification, ammonia, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27873249 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique
Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama
Abstract:
This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.
Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12763248 Bi-linear Complementarity Problem
Authors: Chao Wang, Ting-Zhu Huang Chen Jia
Abstract:
In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.
Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17373247 Fully Parameterizable FPGA based Crypto-Accelerator
Authors: Iqbalur Rahman, Miftahur Rahman, Abul L Haque, Mostafizur Rahman,
Abstract:
In this paper, RSA encryption algorithm and its hardware implementation in Xilinx-s Virtex Field Programmable Gate Arrays (FPGA) is analyzed. The issues of scalability, flexible performance, and silicon efficiency for the hardware acceleration of public key crypto systems are being explored in the present work. Using techniques based on the interleaved math for exponentiation, the proposed RSA calculation architecture is compared to existing FPGA-based solutions for speed, FPGA utilization, and scalability. The paper covers the RSA encryption algorithm, interleaved multiplication, Miller Rabin algorithm for primality test, extended Euclidean math, basic FPGA technology, and the implementation details of the proposed RSA calculation architecture. Performance of several alternative hardware architectures is discussed and compared. Finally, conclusion is drawn, highlighting the advantages of a fully flexible & parameterized design.Keywords: Crypto Accelerator, FPGA, Public Key Cryptography, RSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779