Search results for: organizational learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2375

Search results for: organizational learning.

605 Developing Research Involving Different Species: Opportunities and Empirical Foundations

Authors: A. V. Varfolomeeva, N. S. Tkachenko, A. G. Tishchenko

Abstract:

In this study, we addressed the problem of weak validity, implausible results, and inaccurate reporting in psychological research on different species. The theoretical basis of the study was the systems-evolutionary approach (SEA). We assumed that the root of the problem is the values and attitudes of the researchers (in particular anthropomorphism and anthropocentrism). The first aim of the study was the formulation of a research design that avoids this problem. Based on a literature review, we concluded that such design, amongst other things, should include methodics with playful components. The second aim was to conduct a series of studies on the differences in the formation of instrumental skill in rats raised and housed in different environments. As a result, we revealed that there are contradictions between some of the statements of SEA, so that it is not possible to choose one of the alternative hypotheses. We suggested that in order to get out of this problem, it is necessary to modify these provisions by aligning them with the attitude of multicentrism.

Keywords: epistemological attitudes, experimental design, validity, psychological structure, learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
604 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
603 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
602 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry

Authors: A. Tellaeche, R. Arana

Abstract:

Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.

Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
601 An Evaluation of the Opportunities and Challenges of Wi-Fi Adoption in Malaysian Institutions

Authors: Subrahmanyam Kodukula, Nurbiya Maimaiti

Abstract:

There have been many variations of technologies that helped educators in teaching & learning. From the past research it is evident that Information Technology significantly increases student participation and interactivity in the classrooms. This research started with a aim to find whether adoption of Wi-Fi environment by Malaysian Higher Educational Institutions (HEI) can benefit students and staff equally. The study was carried out in HEI-s of Klang Valley, Malaysia and the data is gathered through paper based surveys. A sample size of 237 units were randomly selected from 5 higher educational institutions in the Klang Valley using the Stratified Random sampling method and from the analysis of the data, it was found that the implementation of wireless technologies in HEIs have created lot of opportunities and also challenges.

Keywords: Wired Technologies, Wireless Classroom, HEI, Dense User Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
600 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
599 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
598 Evolutionary Feature Selection for Text Documents using the SVM

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.

Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
597 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
596 Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
595 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
594 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: Camshift Algorithm, Computer Vision, Kalman Filter, Object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
593 Children’s Literature in Primary School: An Opportunity to Develop Soft Skills

Authors: C. Cruz, A. Breda

Abstract:

Emotions are manifestations of everything that happens around us, influencing, consequently, our actions. People experience emotions continuously when socialize with friends, when facing complex situations, and when at school, among many other situations. Although the influence of emotions in the teaching and learning process is nothing new, its study in the academic field has been more popular in recent years, distinguishing between positive (e.g., enjoyment and curiosity) and negative emotions (e.g., boredom and frustration). There is no doubt that emotions play an important role in the students’ learning process since the development of knowledge involves thoughts, actions, and emotions. Nowadays, one of the most significant changes in acquiring knowledge, accessing information, and communicating is the way we do it through technological and digital resources. Faced with an increasingly frequent use of technological or digital means with different purposes, whether in the acquisition of knowledge or in communicating with others, the emotions involved in these processes change naturally. The speed with which the Internet provides information reduces the excitement for searching for the answer, the gratification of discovering something through our own effort, the patience, the capacity for effort, and resilience. Thus, technological and digital devices are bringing changes to the emotional domain. For this reason and others, it is essential to educate children from an early age to understand that it is not possible to have everything with just one click and to deal with negative emotions. Currently, many curriculum guidelines highlight the importance of the development of so-called soft skills, in which the emotional domain is present, in academic contexts. Within the scope of the Portuguese reality, the “Students’ profile by the end of compulsory schooling” and the “Health education reference” also emphasize the importance of emotions in education. There are several resources to stimulate good emotions in articulation with cognitive development. One of the most predictable and not very used resources in the most diverse areas of knowledge after pre-school education is the literature. Due to its characteristics, in the narrative or in the illustrations, literature provides the reader with a journey full of emotions. On the other hand, literature makes it possible to establish bridges between narrative and different areas of knowledge, reconciling the cognitive and emotional domains. This study results from the presentation session of a children's book, entitled “From the Outside to Inside and from the Inside to Outside”, to children attending the 2nd, 3rd, and 4th years of basic education in the Portuguese education system. In this book, rationale and emotion are in constant dialogue, so in this session, based on excerpts from the book dramatized by the authors, some questions were asked to the children in a large group, with an aim to explore their perception regarding certain emotions or events that trigger them. According to the aim of this study, qualitative, descriptive, and interpretative research was carried out based on participant observation and audio records.

Keywords: Emotions, children’s literature, basic education, soft skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
592 Edit Distance Algorithm to Increase Storage Efficiency of Javanese Corpora

Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy

Abstract:

Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Keywords: edit distance coefficient, Javanese, parallel text alignment, phrase pair combination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
591 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
590 Different Roles for Mentors and Mentees in an e-Learning Environment

Authors: Nidhi Gadura

Abstract:

Given the increase in the number of students and administrators asking for online courses the author developed two partially online courses. One was a biology majors at genetics course while the other was a non-majors at biology course. The student body at Queensborough Community College is generally underprepared and has work and family obligations. As an educator, one has to be mindful about changing the pedagogical approach, therefore, special care was taken when designing the course material. Despite the initial concerns, both of these partially online courses were received really well by students. Lessons learnt were that student engagement is the key to success in an online course. Good practices to run a successful online course for underprepared students are discussed in this paper. Also discussed are the lessons learnt for making the eLearning environment better for all the students in the class, overachievers and underachievers alike.

Keywords: Partially online course, pedagogy, student engagement, community college.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
589 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: Feature selection, mass spectrometry, biomarker discovery, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
588 Partner Selection in International Strategic Alliances: The Case of the Information Industry

Authors: H. Nakamura

Abstract:

This study analyzes international strategic alliances in the information industry. The purpose of this study is to clarify the strategic intention of an international alliance. Secondly, it investigates the influence of differences in the target markets of partner companies on alliances. Using an international strategy theory approach to analyze the global strategies of global companies, the study compares a database business and an electronic publishing business. In particular, these cases emphasized factors attributable to "people" and "learning", reliability and communication between organizations and the evolution of the IT infrastructure. The theory evolved in this study validates the effectiveness of these strategies.

Keywords: Database business, electronic library, international strategic alliances, partner selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
587 Human Capital and the Innovation System – Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Innovation plays an important role in economic growth and development. Evolutionary economics has entrepreneurs at the centre of the innovation system, but includes all other participants as contributors to the performance of the innovation system. Education and training institutions, one of the participants in the innovation system, contributes in different ways to human capital. The gap in literature on the competence building as part of human capital in the analysis of innovation systems is addressed in this paper. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: Education institutions, human capital, innovation systems, Mpumalanga Province.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
586 Analysis of Textual Data Based On Multiple 2-Class Classification Models

Authors: Shigeaki Sakurai, Ryohei Orihara

Abstract:

This paper proposes a new method for analyzing textual data. The method deals with items of textual data, where each item is described based on various viewpoints. The method acquires 2- class classification models of the viewpoints by applying an inductive learning method to items with multiple viewpoints. The method infers whether the viewpoints are assigned to the new items or not by using the models. The method extracts expressions from the new items classified into the viewpoints and extracts characteristic expressions corresponding to the viewpoints by comparing the frequency of expressions among the viewpoints. This paper also applies the method to questionnaire data given by guests at a hotel and verifies its effect through numerical experiments.

Keywords: Text mining, Multiple viewpoints, Differential analysis, Questionnaire data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
585 Bridging the Communication Gap at NASA - A Case Study in Communities of Practice

Authors: Daria Topousis, Keri Murphy, Jeanne Holm

Abstract:

Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge-sharing tools. This paper describes the implementation of communities of practice, which are formed along engineering disciplines. Communities of practice enable engineers to leverage their knowledge and best practices to collaborate and take information learning back to their jobs and embed it into the procedures of the agency. This case study offers insight into using traditional engineering disciplines for virtual collaboration, including lessons learned during the creation and establishment of NASA-s communities.

Keywords: Collaboration, communities of practice, knowledge management, virtual teams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
584 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier

Authors: Khin May Win, Nan Sai Moon Kham

Abstract:

Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.

Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
583 Addressing Data Security in the Cloud

Authors: Marinela Mircea

Abstract:

The development of information and communication technology, the increased use of the internet, as well as the effects of the recession within the last years, have lead to the increased use of cloud computing based solutions, also called on-demand solutions. These solutions offer a large number of benefits to organizations as well as challenges and risks, mainly determined by data visualization in different geographic locations on the internet. As far as the specific risks of cloud environment are concerned, data security is still considered a peak barrier in adopting cloud computing. The present study offers an approach upon ensuring the security of cloud data, oriented towards the whole data life cycle. The final part of the study focuses on the assessment of data security in the cloud, this representing the bases in determining the potential losses and the premise for subsequent improvements and continuous learning.

Keywords: cloud computing, data life cycle, data security, security assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
582 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
581 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.

Keywords: Brain-derived neurotrophic factor, iron, Vitamin B9, Vitamin B12, Vitamin D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
580 What Managers Think of Informal Networks and Knowledge Sharing by Means of Personal Networking?

Authors: Mahmood Q.K. Ghaznavi, Martin Perry, Paul Toulson, Keri Logan

Abstract:

The importance of nurturing, accumulating, and efficiently deploying knowledge resources through formal structures and organisational mechanisms is well understood. Recent trends in knowledge management (KM) highlight that the effective creation and transfer of knowledge can also rely upon extra-organisational channels, such as, informal networks. The perception exists that the role of informal networks in knowledge creation and performance has been underestimated in the organisational context. Literature indicates that many managers fail to comprehend and successfully exploit the potential role of informal networks to create value for their organisations. This paper investigates: 1) whether managers share work-specific knowledge with informal contacts within and outside organisational boundaries; and 2) what do they think is the importance of this knowledge collaboration in their learning and work outcomes.

Keywords: Informal network, knowledge management, knowledge sharing, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
579 Weka Based Desktop Data Mining as Web Service

Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella

Abstract:

Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.

Keywords: desktop application, Weka mining, web service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4080
578 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
577 Content-Based Color Image Retrieval Based On 2-D Histogram and Statistical Moments

Authors: Khalid Elasnaoui, Brahim Aksasse, Mohammed Ouanan

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: 2-D histogram, Statistical moments, Indexing, Similarity distance, Histograms intersection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
576 The Links between Brain Insulin Resistance and Alzheimer’s Disease

Authors: Negar Khezri, Golnaz Yaghoubnezhadzanganeh, Amirreza Attarzadeh

Abstract:

Type 2 Diabetes (T2DM) and Alzheimer's disease (AD) are two main health problems influencing millions of people in the world. Neuron loss and synaptic impairment that interfere with cognition and memory cause for the behavioral indications of AD. While it is now accepted that insulin has central neuromodulatory purpose, it was contemplated for many years that brain is insusceptible to insulin, involving its function in memory and learning, which are impaired in AD. The common characteristics of both AD and T2D are impaired insulin signaling, oxidative stress, the excitation of inflammatory pathways and unqualified glucose metabolism. This review summarizes how the recognition of these mechanisms may lead to the development of alternative therapeutic approaches. Here we summarize how the recognition of these mechanisms may lead to the development of alternative therapeutic approaches.

Keywords: Alzheimer’s disease, diabetes, insulin resistance, neurodegenerative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136