Search results for: motion optimization.
2386 Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey
Authors: C. Deepika, J. Nithya
Abstract:
Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.
Keywords: Ant colony optimization, Artificial bee colony optimization, Cuckoo search algorithm, Image segmentation, Multilevel thresholding, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35232385 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8782384 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: Expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23812383 Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning
Authors: Sandeep Singh Gill, Rajeevan Chandel, Ashwani Chandel
Abstract:
This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.
Keywords: Partitioning, genetic algorithm, ant colony optimization, non-polynomial hard, netlist, mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22482382 Optimized Weight Vector for QoS Aware Web Service Selection Algorithm Using Particle Swarm Optimization
Authors: N. Arulanand, P. M. Ananth
Abstract:
Quality of Service (QoS) attributes as part of the service description is an important factor for service attribute. It is not easy to exactly quantify the weight of each QoS conditions since human judgments based on their preference causes vagueness. As web services selection requires optimization, evolutionary computing based on heuristics to select an optimal solution is adopted. In this work, the evolutionary computing technique Particle Swarm Optimization (PSO) is used for selecting a suitable web services based on the user’s weightage of each QoS values by optimizing the QoS weight vector and thereby finding the best weight vectors for best services that is being selected. Finally the results are compared and analyzed using static inertia weight and deterministic inertia weight of PSO.Keywords: QoS, Optimization, Particle Swarm Optimization (PSO), weight vector, web services, web service selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20132381 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization
Authors: Sangeeta Mondal, Vasundhara, Rajib Kar, Durbadal Mandal, S. P. Ghoshal
Abstract:
This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.Keywords: FIR Filter, IPSO, GA, PSO, Parks and McClellan Algorithm, Evolutionary Optimization, High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30992380 Material Density Mapping on Deformable 3D Models of Human Organs
Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat
Abstract:
Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.
Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30082379 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).
Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17302378 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow
Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir
Abstract:
One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.Keywords: Facial expression, Facial features, Optical flow, Motion vectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23762377 On Climbing Winding Stairs for a Robotic Wheelchair
Authors: Chun-Ta Chen, Te-Tan Liao, Hoang-Vuong Pham
Abstract:
In this paper motion analysis on a winding stair-climbing is investigated using our proposed rotational arm type of robotic wheelchair. For now, the robotic wheelchair is operated in an open mode to climb winding stairs by a dynamic turning, therefore, the dynamics model is required to ensure a passenger-s safety. Equations of motion based on the skid-steering analysis are developed for the trajectory planning and motion analysis on climbing winding stairs. Since the robotic wheelchair must climb a winding staircase stably, the winding trajectory becomes a constraint equation to be followed, and the Baumgarte-s method is used to solve for the constrained dynamics equations. Experimental results validate the behavior of the prototype as it climbs a winding stair.Keywords: Climb, robotic wheelchair, skid-steering, windingstair .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22622376 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10602375 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization
Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal
Abstract:
This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.
Keywords: Thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26712374 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.
Keywords: Cloud computing, cloud monitoring, performance optimization, high availability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742373 Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs
Authors: D. Fodorean, D.C. Popa, F. Jurca, M. Ruba
Abstract:
the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.Keywords: electrical machines, numerical validation, optimization, electric wheel chair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20722372 Low Power and Less Area Architecture for Integer Motion Estimation
Authors: C Hisham, K Komal, Amit K Mishra
Abstract:
Full search block matching algorithm is widely used for hardware implementation of motion estimators in video compression algorithms. In this paper we are proposing a new architecture, which consists of a 2D parallel processing unit and a 1D unit both working in parallel. The proposed architecture reduces both data access power and computational power which are the main causes of power consumption in integer motion estimation. It also completes the operations with nearly the same number of clock cycles as compared to a 2D systolic array architecture. In this work sum of absolute difference (SAD)-the most repeated operation in block matching, is calculated in two steps. The first step is to calculate the SAD for alternate rows by a 2D parallel unit. If the SAD calculated by the parallel unit is less than the stored minimum SAD, the SAD of the remaining rows is calculated by the 1D unit. Early termination, which stops avoidable computations has been achieved with the help of alternate rows method proposed in this paper and by finding a low initial SAD value based on motion vector prediction. Data reuse has been applied to the reference blocks in the same search area which significantly reduced the memory access.
Keywords: Sum of absolute difference, high speed DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922371 Modeling of Dielectric Heating in Radio- Frequency Applicator Optimized for Uniform Temperature by Means of Genetic Algorithms
Authors: Camelia Petrescu, Lavinia Ferariu
Abstract:
The paper presents an optimization study based on genetic algorithms (GA-s) for a radio-frequency applicator used in heating dielectric band products. The weakly coupled electro-thermal problem is analyzed using 2D-FEM. The design variables in the optimization process are: the voltage of a supplementary “guard" electrode and six geometric parameters of the applicator. Two objective functions are used: temperature uniformity and total active power absorbed by the dielectric. Both mono-objective and multiobjective formulations are implemented in GA optimization.Keywords: Dielectric heating, genetic algorithms, optimization, RF applicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19312370 The Synthetic T2 Quality Control Chart and its Multi-Objective Optimization
Authors: Francisco Aparisi, Marco A. de Luna
Abstract:
In some real applications of Statistical Process Control it is necessary to design a control chart to not detect small process shifts, but keeping a good performance to detect moderate and large shifts in the quality. In this work we develop a new quality control chart, the synthetic T2 control chart, that can be designed to cope with this objective. A multi-objective optimization is carried out employing Genetic Algorithms, finding the Pareto-optimal front of non-dominated solutions for this optimization problem.Keywords: Multi-objective optimization, Quality Control, SPC, Synthetic T2 control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15592369 Improvement of Gregory's formula using Particle Swarm Optimization
Authors: N. Khelil. L. Djerou , A. Zerarka, M. Batouche
Abstract:
Consider the Gregory integration (G) formula with end corrections where h Δ is the forward difference operator with step size h. In this study we prove that can be optimized by minimizing some of the coefficient k a in the remainder term by particle swarm optimization. Experimental tests prove that can be rendered a powerful formula for library use.Keywords: Numerical integration, Gregory Formula, Particle Swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13812368 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration
Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich
Abstract:
Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.Keywords: Optimization, zero-coupon curve, Nelson-Siegel- Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14912367 The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion, and Strength in Patients with Insertional Achilles Tendinosis
Authors: P. Sanzo
Abstract:
Increased physical fitness participation has been paralleled by increasedoveruse injuries such as insertional Achilles tendinosis (AT). Treatment has provided inconsistentresults. The use of extracorporeal shockwave therapy (ECSWT) offers a new treatment consideration.The purpose of this study was to assess the effects of ECSWTon pain, function, range of motion (ROM), joint mobility and strength in patients with AT. Thirty subjects were treated with ECSWT and measures were takenbefore and three months after treatment. There was significant differences in visual analog scale (VAS) scores for pain at rest (p=0.002); after activity (p= 0.0001); overall improvement(p=0.0001); Lower Extremity Functional Scale (LEFS) scores (p=0.002); dorsiflexion range of motion (ROM) (p=0.0001); plantarflexion strength (p=0.025); talocrural joint anterior glide (p=0.046); and subtalar joint medial and lateral glide (p=0.025).ECSWT offers a new intervention that may limit the progression of the disorder and the long term healthcare costs associated with AT.Keywords: Extracorporeal shockwave therapy, shockwave therapy, Achilles tendinosis, range of motion, strength, joint mobility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15842366 Utility of Range of Motion Measurements on Classification of Athletes
Authors: Dhiraj Dolai, Rupayan Bhattacharya
Abstract:
In this study, a comparison of Range Of Motion (ROM) of middle and long-distance runners and swimmers has been made. The mobility of the various joints is essential for the quick movement of any sportsman. Knowledge of a ROM helps in preventing injuries, in repeating the movement, and in generating speed and power. ROM varies among individuals, and it is influenced by factors such as gender, age, and whether the motion is performed actively or passively. ROM for running and swimming, both performed with due consideration on speed, plays an important role. The time of generation of speed and mobility of the particular joints are very important for both kinds of athletes. The difficulties that happen during running and swimming in the direction of motion is changed. In this study, data were collected for a total of 102 subjects divided into three groups: control group (22), middle and long-distance runners (40), and swimmers (40), and their ages are between 12 to 18 years. The swimmers have higher ROM in shoulder joint flexion, extension, abduction, and adduction movement. Middle and long-distance runners have significantly greater ROM from Control Group in the left shoulder joint flexion with a 5.82 mean difference. Swimmers have significantly higher ROM from the Control Group in the left shoulder joint flexion with 24.84 mean difference and swimmers have significantly higher ROM from the Middle and Long distance runners in left shoulder flexion with 19.02 mean difference. The picture will be clear after a more detailed investigation.Keywords: Range of motion, runners, swimmers, significance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5102365 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure
Authors: Rimmy Yadav, Avtar Singh
Abstract:
Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.Keywords: Ant colony optimization, link failure, prim’s algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21842364 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352363 Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems
Authors: Younis R. Elhaddad
Abstract:
Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.
Keywords: Genetic Algorithm, Optimization problems, Simulated Annealing, Traveling Salesman Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34402362 Cognitive Virtual Exploration for Optimization Model Reduction
Authors: Livier Serna, Xavier Fischer, Fouad Bennis
Abstract:
In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14262361 Rational Structure of Panel with Curved Plywood Ribs
Authors: Janis Šliseris, Karlis Rocens
Abstract:
Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.Keywords: Curved plywood ribs, genetic algorithm, rationalparameters of ribbed panel, structure optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17392360 Strategy for Optimal Configuration Design of Existing Structures by Topology and Shape Optimization Tools
Authors: Waqas Saleem, Fan Yuqing
Abstract:
A strategy is implemented to find the improved configuration design of an existing aircraft structure by executing topology and shape optimizations. Structural analysis of the Initial Design Space is performed in ANSYS under the loads pertinent to operating and ground conditions. By using the FEA results and data, an initial optimized layout configuration is attained by exploiting nonparametric topology optimization in TOSCA software. Topological optimized surfaces are then smoothened and imported in ANSYS to develop the geometrical features. Nodes at the critical locations of resulting voids are selected for sketching rough profiles. Rough profiles are further refined and CAD feasible geometric features are generated. The modified model is then analyzed under the same loadings and constraints as defined for topology optimization. Shape at the peak stress concentration areas are further optimized by exploiting the shape optimization in TOSCA.shape module. The harmonized stressed model with the modified surfaces is then imported in CATIA to develop the final design.
Keywords: Structural optimization, Topology optimization, Shape optimization, Tail fin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28102359 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm
Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari
Abstract:
In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062358 Engineering Optimization Using Two-Stage Differential Evolution
Authors: K. Y. Tseng, C. Y. Wu
Abstract:
This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.
Keywords: Differential evolution, truss structure optimization, optimal chiller loading, modified binary differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7072357 Experimental Modal Analysis and Model Validation of Antenna Structures
Authors: B.R. Potgieter, G. Venter
Abstract:
Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.Keywords: Finite Element Model (FEM), Karoo Array Telescope(KAT-7), modal frequencies, mode shapes, optimization, shape optimization, size optimization, vibration tests
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852