Search results for: Spatial Decision Support System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10901

Search results for: Spatial Decision Support System

10751 Hybrid Methods for Optimisation of Weights in Spatial Multi-Criteria Evaluation Decision for Fire Risk and Hazard

Authors: I. Yakubu, D. Mireku-Gyimah, D. Asafo-Adjei

Abstract:

The challenge for everyone involved in preserving the ecosystem is to find creative ways to protect and restore the remaining ecosystems while accommodating and enhancing the country social and economic well-being. Frequent fires of anthropogenic origin have been affecting the ecosystems in many countries adversely. Hence adopting ways of decision making such as Multicriteria Decision Making (MCDM) is appropriate since it will enhance the evaluation and analysis of fire risk and hazard of the ecosystem. In this paper, fire risk and hazard data from the West Gonja area of Ghana were used in some of the methods (Analytical Hierarchy Process, Compromise Programming, and Grey Relational Analysis (GRA) for MCDM evaluation and analysis to determine the optimal weight method for fire risk and hazard. Ranking of the land cover types was carried out using; Fire Hazard, Fire Fighting Capacity and Response Risk Criteria. Pairwise comparison under Analytic Hierarchy Process (AHP) was used to determine the weight of the various criteria. Weights for sub-criteria were also obtained by the pairwise comparison method. The results were optimised using GRA and Compromise Programming (CP). The results from each method, hybrid GRA and CP, were compared and it was established that all methods were satisfactory in terms of optimisation of weight. The most optimal method for spatial multicriteria evaluation was the hybrid GRA method. Thus, a hybrid AHP and GRA method is more effective method for ranking alternatives in MCDM than the hybrid AHP and CP method.

Keywords: Compromise programming, grey relational analysis, spatial multi-criteria, weight optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
10750 Optimal Construction Using Multi-Criteria Decision-Making Methods

Authors: Masood Karamoozian, Zhang Hong

Abstract:

The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Precast Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts in university centers and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the PRCS was in the first rank, and the LSF system ranked second. Also, the PRCS, in terms of performance standards and economics, was ranked first, and the LSF system was allocated the first rank in terms of environmental standards.

Keywords: Multi-criteria decision making, AHP, SAW, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
10749 Spatial Structure and Process of Arctic Warming and Land Cover Change in the Feedback Systems Framework

Authors: Eric Kojo Wu Aikins

Abstract:

This paper examines the relationships between and among the various drivers of climate change that have both climatic and ecological consequences for vegetation and land cover change in arctic areas, particularly in arctic Alaska. It discusses the various processes that have created spatial and climatic structures that have facilitated observable vegetation and land cover changes in the Arctic. Also, it indicates that the drivers of both climatic and ecological changes in the Arctic are multi-faceted and operate in a system with both positive and negative feedbacks that largely results in further increases or decreases of the initial drivers of climatic and vegetation change mainly at the local and regional scales. It demonstrates that the impact of arctic warming on land cover change and the Arctic ecosystems is not unidirectional and one dimensional in nature but it represents a multi-directional and multi-dimensional forces operating in a feedback system.

Keywords: Arctic Vegetation Change, Climate Change, Feedback System, Spatial Process and Structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
10748 Application of GIS-Based Construction Engineering: An Electronic Document Management System

Authors: Mansour N. Jadid

Abstract:

This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.

Keywords: Construction, coordinate, engineering, GIS, management, map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
10747 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
10746 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
10745 A General Stochastic Spatial MIMO Channel Model for Evaluating Various MIMO Techniques

Authors: Fang Shu, Li Lihua, Zhang Ping

Abstract:

A general stochastic spatial MIMO channel model is proposed for evaluating various MIMO techniques in this paper. It can generate MIMO channels complying with various MIMO configurations such as smart antenna, spatial diversity and spatial multiplexing. The modeling method produces the stochastic fading involving delay spread, Doppler spread, DOA (direction of arrival), AS (angle spread), PAS (power azimuth Spectrum) of the scatterers, antenna spacing and the wavelength. It can be applied in various MIMO technique researches flexibly with low computing complexity.

Keywords: MIMO channel, Spatial Correlation, DOA, AS, PAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
10744 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
10743 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
10742 Forecasting Fraudulent Financial Statements using Data Mining

Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas

Abstract:

This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.

Keywords: Machine learning, stacking, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
10741 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture

Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro

Abstract:

One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.

Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
10740 Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations

Authors: Aliaksei Patsekha, Michael Hohenberger, Harald Raupenstrauch

Abstract:

An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.

Keywords: Boundary values, CBRNE threats, decision making process, hazardous effects, vulnerability analysis, risk zones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
10739 A Support System Applicable to Multiple APIs for Haptic VR Application Designers

Authors: Masaharu Isshiki, Kenji Murakami, Shun Ido

Abstract:

This paper describes a proposed support system which enables applications designers to effectively create VR applications using multiple haptic APIs. When the VR designers create applications, it is often difficult to handle and understand many parameters and functions that have to be set in the application program using documentation manuals only. This complication may disrupt creative imagination and result in inefficient coding. So, we proposed the support application which improved the efficiency of VR applications development and provided the interactive components of confirmation of operations with haptic sense previously. In this paper, we describe improvements of our former proposed support application, which was applicable to multiple APIs and haptic devices, and evaluate the new application by having participants complete VR program. Results from a preliminary experiment suggest that our application facilitates creation of VR applications.

Keywords: VR application, Support system, Haptic devices, Haptic APIs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
10738 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment

Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan

Abstract:

The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.

Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
10737 SOA-Based Mobile Application for Crime Control in Thailand

Authors: Jintana Khemprasit, Vatcharaporn Esichaikul

Abstract:

Crime is a major societal problem for most of the world's nations. Consequently, the police need to develop new methods to improve their efficiency in dealing with these ever increasing crime rates. Two of the common difficulties that the police face in crime control are crime investigation and the provision of crime information to the general public to help them protect themselves. Crime control in police operations involves the use of spatial data, crime data and the related crime data from different organizations (depending on the nature of the analysis to be made). These types of data are collected from several heterogeneous sources in different formats and from different platforms, resulting in a lack of standardization. Moreover, there is no standard framework for crime data collection, integration and dissemination through mobile devices. An investigation into the current situation in crime control was carried out to identify the needs to resolve these issues. This paper proposes and investigates the use of service oriented architecture (SOA) and the mobile spatial information service in crime control. SOA plays an important role in crime control as an appropriate way to support data exchange and model sharing from heterogeneous sources. Crime control also needs to facilitate mobile spatial information services in order to exchange, receive, share and release information based on location to mobile users anytime and anywhere.

Keywords: Crime Control, Geographic Information System (GIS), Mobile GIS, Service Oriented Architecture (SOA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
10736 ORPP with MAIEP Based Technique for Loadability Enhancement

Authors: Norziana Aminudin, Titik Khawa Abdul Rahman, Ismail Musirin

Abstract:

One of the factors to maintain system survivability is the adequate reactive power support to the system. Lack of reactive power support may cause undesirable voltage decay leading to total system instability. Thus, appropriate reactive power support scheme should be arranged in order to maintain system stability. The strength of a system capacity is normally denoted as system loadability. This paper presents the enhancement of system loadability through optimal reactive power planning technique using a newly developed optimization technique, termed as Multiagent Immune Evolutionary Programming (MAIEP). The concept of MAIEP is developed based on the combination of Multiagent System (MAS), Artificial Immune System (AIS) and Evolutionary Programming (EP). In realizing the effectiveness of the proposed technique, validation is conducted on the IEEE-26-Bus Reliability Test System. The results obtained from pre-optimization and post-optimization process were compared which eventually revealed the merit of MAIEP.

Keywords: Load margin, MAIEP, Maximum loading point, ORPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
10735 An Exploration of the Dimensions of Place-Making: A South African Case Study

Authors: W. J. Strydom, K. Puren

Abstract:

Place-making is viewed here as an empowering process in which people represent, improve and maintain their spatial (natural or built) environment. With the above-mentioned in mind, place-making is multi-dimensional and include a spatial dimension (including visual properties or the end product/plan), a procedural dimension during which (negotiation/discussion of ideas with all relevant stakeholders in terms of end product/plan) and a psychological dimension (inclusion of intrinsic values and meanings related to a place in the end product/plan). These three represent dimensions of place-making. The purpose of this paper is to explore these dimensions of place-making in a case study of a local community in Ikageng, Potchefstroom, North-West Province, South Africa. This case study represents an inclusive process that strives to empower a local community (forcefully relocated due to Apartheid legislation in South Africa). This case study focussed on the inclusion of participants in the decision-making process regarding their daily environment. By means of focus group discussions and a collaborative design workshop, data is generated and ultimately creates a linkage with the theoretical dimensions of place-making. This paper contributes to the field of spatial planning due to the exploration of the dimensions of place-making and the relevancy of this process on spatial planning (especially in a South African setting).

Keywords: Case study, place-making, spatial planning, spatial dimension, procedural dimension, psychological dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
10734 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: Business intelligence, business intelligence capability, decision making, decision quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
10733 Design Considerations of Scheduling Systems Suitable for PCB Manufacturing

Authors: Oscar Fernandez-Flores, Tony Speer, Rodney Day

Abstract:

This paper identifies five key design characteristics of production scheduling software systems in printed circuit board (PCB) manufacturing. The authors consider that, in addition to an effective scheduling engine, a scheduling system should be able to process a preventative maintenance calendar, to give the user the flexibility to handle data using a variety of electronic sources, to run simulations to support decision-making, and to have simple and customisable graphical user interfaces. These design considerations were the result of a review of academic literature, the evaluation of commercial applications and a compilation of requirements of a PCB manufacturer. It was found that, from those systems that were evaluated, those that effectively addressed all five characteristics outlined in this paper were the most robust of all and could be used in PCB manufacturing.

Keywords: Decision-making, ERP, PCB, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
10732 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano

Abstract:

Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.

Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325
10731 Integrating Security Indifference Curve to Formal Decision Evaluation

Authors: Anon Yantarasri, Yachai Limpiyakorn

Abstract:

Decisions are regularly made during a project or daily life. Some decisions are critical and have a direct impact on project or human success. Formal evaluation is thus required, especially for crucial decisions, to arrive at the optimal solution among alternatives to address issues. According to microeconomic theory, all people-s decisions can be modeled as indifference curves. The proposed approach supports formal analysis and decision by constructing indifference curve model from the previous experts- decision criteria. These knowledge embedded in the system can be reused or help naïve users select alternative solution of the similar problem. Moreover, the method is flexible to cope with unlimited number of factors influencing the decision-making. The preliminary experimental results of the alternative selection are accurately matched with the expert-s decisions.

Keywords: Decision Analysis and Resolution, Indifference Curve, Multi-criteria Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
10730 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
10729 Biological Soil Conservation Planning by Spatial Multi-Criteria Evaluation Techniques (Case Study: Bonkuh Watershed in Iran)

Authors: Ali Akbar Jamali

Abstract:

This paper discusses site selection process for biological soil conservation planning. It was supported by a valuefocused approach and spatial multi-criteria evaluation techniques. A first set of spatial criteria was used to design a number of potential sites. Next, a new set of spatial and non-spatial criteria was employed, including the natural factors and the financial costs, together with the degree of suitability for the Bonkuh watershed to biological soil conservation planning and to recommend the most acceptable program. The whole process was facilitated by a new software tool that supports spatial multiple criteria evaluation, or SMCE in GIS software (ILWIS). The application of this tool, combined with a continual feedback by the public attentions, has provided an effective methodology to solve complex decisional problem in biological soil conservation planning.

Keywords: GIS, Biological soil conservation planning, Spatial multi-criteria evaluation, Iran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
10728 Comparative Spatial Analysis of a Re-arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and selfinnovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, Connectivity, Visual Mean Depth, Beta and Visual Integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: Architecture, hospital building, space syntax, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
10727 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
10726 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model

Authors: M.Sujaritha, S. Annadurai

Abstract:

An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.

Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
10725 Scanning Device for Sampling the Spatial Distribution of the E-field

Authors: Juan Blas, Alfonso Bahillo, Santiago Mazuelas, David Bullido, Patricia Fernandez, Ruben M. Lorenzo, Evaristo J. Abril

Abstract:

This paper presents a low cost automatic system for sampling the electric field in a limited area. The scanning area is a flat surface parallel to the ground at a selected height. We discuss in detail the hardware, software and all the arrangements involved in the system operation. In order to show the system performance we include a campaign of narrow band measurements with 6017 sample points in the surroundings of a cellular base station. A commercial isotropic antenna with three orthogonal axes was used as sampling device. The results are analyzed in terms of its space average, standard deviation and statistical distribution.

Keywords: measurement device, propagation, spatial sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
10724 Decision Support System for Suppliers

Authors: Babak Tashakori Bafghi, Laleh Tashakori, Reza Allahyari Soeini, Mohammad Mokhtari

Abstract:

Supplier selection is a multi criteria decision-making process that comprises tangible and intangible factors. The majority of previous supplier selection techniques do not consider strategic perspective. Besides, uncertainty is one of the most important obstacles in supplier selection. For the first, time in this paper, the idea of the algorithm " Knapsack " is used to select suppliers Moreover, an attempt has to be made to take the advantage of a simple numerical method for solving model .This is an innovation to resolve any ambiguity in choosing suppliers. This model has been tried in the suppliers selected in a competitive environment and according to all desired standards of quality and quantity to show the efficiency of the model, an industry sample has been uses.

Keywords: Knapsack, linear programming, supplier select, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
10723 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: Space Syntax, spatial texture, urban space, Yangzhou.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
10722 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919