Search results for: Parameter Estimation
1868 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20411867 H∞ State Estimation of Neural Networks with Discrete and Distributed Delays
Abstract:
In this paper, together with some improved Lyapunov-Krasovskii functional and effective mathematical techniques, several sufficient conditions are derived to guarantee the error system is globally asymptotically stable with H∞ performance, in which both the time-delay and its time variation can be fully considered. In order to get less conservative results of the state estimation condition, zero equalities and reciprocally convex approach are employed. The estimator gain matrix can be obtained in terms of the solution to linear matrix inequalities. A numerical example is provided to illustrate the usefulness and effectiveness of the obtained results.
Keywords: H∞ performance, Neural networks, State estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461866 A New Criterion Pose and Shape of Objects for Collision Risk Estimation
Authors: Do Hyeung Kim, Dae Hee Seo, Byung Doo Kim, Byung Gil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.
Keywords: Collision risk, Pose and shape, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091865 Estimation of Load Impedance in Presence of Harmonics
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a fast and efficient on-line technique for estimating impedance of unbalanced loads in power systems. The proposed technique is an application of a discrete timedynamic filter based on stochastic estimation theory which is suitable for estimating parameters in noisy environment. The algorithm uses sets of digital samples of the distorted voltage and current waveforms of the non-linear load to estimate the harmonic contents of these two signal. The non-linear load impedance is then calculated from these contents. The method is tested using practical data. Results are reported and compared with those obtained using the conventional least error squares technique. In addition to the very accurate results obtained, the method can detect and reject bad measurements. This can be considered as a very important advantage over the conventional static estimation methods such as the least error square method.
Keywords: Estimation, identification, Harmonics, Dynamic Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20631864 Efficient Signal Detection Using QRD-M Based On Channel Condition in MIMO-OFDM System
Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song
Abstract:
In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better tradeoff between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.
Keywords: MIMO-OFDM, QRD-M, Channel condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20221863 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.
Keywords: Fast motion estimation, low-complexity motion estimation, video coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8541862 Sensitivity Analysis for Direction of Arrival Estimation Using Capon and Music Algorithms in Mobile Radio Environment
Authors: Mustafa Abdalla, Khaled A. Madi, Rajab Farhat
Abstract:
An array antenna system with innovative signal processing can improve the resolution of a source direction of arrival (DoA) estimation. High resolution techniques take the advantage of array antenna structures to better process the incoming waves. They also have the capability to identify the direction of multiple targets. This paper investigates performance of the DOA estimation algorithm namely; Capon and MUSIC on the uniform linear array (ULA). The simulation results show that in Capon and MUSIC algorithm the resolution of the DOA techniques improves as number of snapshots, number of array elements, signal-to-noise ratio and separation angle between the two sources θ increases.Keywords: Antenna array, Capon, MUSIC, Direction-of-arrival estimation, signal processing, uniform linear arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27301861 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561860 Effect of Soil Corrosion in Failures of Buried Gas Pipelines
Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur
Abstract:
In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.
Keywords: Corrosion, pit depth, sensitivity analysis, exposure period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301859 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: Artificial neural network, low series manufacturing, polymer cutting, setup period estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9751858 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311857 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation
Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz
Abstract:
Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with successKeywords: Software Metrics, Software Cost Estimation, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571856 Bayesian Inference for Phase Unwrapping Using Conjugate Gradient Method in One and Two Dimensions
Authors: Yohei Saika, Hiroki Sakaematsu, Shota Akiyama
Abstract:
We investigated statistical performance of Bayesian inference using maximum entropy and MAP estimation for several models which approximated wave-fronts in remote sensing using SAR interferometry. Using Monte Carlo simulation for a set of wave-fronts generated by assumed true prior, we found that the method of maximum entropy realized the optimal performance around the Bayes-optimal conditions by using model of the true prior and the likelihood representing optical measurement due to the interferometer. Also, we found that the MAP estimation regarded as a deterministic limit of maximum entropy almost achieved the same performance as the Bayes-optimal solution for the set of wave-fronts. Then, we clarified that the MAP estimation perfectly carried out phase unwrapping without using prior information, and also that the MAP estimation realized accurate phase unwrapping using conjugate gradient (CG) method, if we assumed the model of the true prior appropriately.
Keywords: Bayesian inference using maximum entropy, MAP estimation using conjugate gradient method, SAR interferometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17511855 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21211854 Comparative Analysis of the Software Effort Estimation Models
Authors: Jaswinder Kaur, Satwinder Singh, Karanjeet Singh Kahlon
Abstract:
Accurate software cost estimates are critical to both developers and customers. They can be used for generating request for proposals, contract negotiations, scheduling, monitoring and control. The exact relationship between the attributes of the effort estimation is difficult to establish. A neural network is good at discovering relationships and pattern in the data. So, in this paper a comparative analysis among existing Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model and Neural Network Based Model is performed. Neural Network has outperformed the other considered models. Hence, we proposed Neural Network system as a soft computing approach to model the effort estimation of the software systems.Keywords: Effort Estimation, Neural Network, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22211853 Spread Spectrum Code Estimationby Particle Swarm Algorithm
Authors: Vahid R. Asghari, Mehrdad Ardebilipour
Abstract:
In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21361852 Low-Complexity Channel Estimation Algorithm for MIMO-OFDM Systems
Authors: Ali Beydoun, Hamzé H. Alaeddine
Abstract:
One of the main challenges in MIMO-OFDM system to achieve the expected performances in terms of data rate and robustness against multi-path fading channels is the channel estimation. Several methods were proposed in the literature based on either least square (LS) or minimum mean squared error (MMSE) estimators. These methods present high implementation complexity as they require the inversion of large matrices. In order to overcome this problem and to reduce the complexity, this paper presents a solution that benefits from the use of the STBC encoder and transforms the channel estimation process into a set of simple linear operations. The proposed method is evaluated via simulation in AWGN-Rayleigh fading channel. Simulation results show a maximum reduction of 6.85% of the bit error rate (BER) compared to the one obtained with the ideal case where the receiver has a perfect knowledge of the channel.Keywords: Channel estimation, MIMO, OFDM, STBC, CAZAC sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8811851 An Improved Algorithm for Channel Estimations of OFDM System based Pilot Signal
Authors: Ahmed N. H. Alnuaimy, Mahamod Ismail, Mohd. A. M. Ali, Kasmiran Jumari, Ayman A. El-Saleh
Abstract:
This paper presents a new algorithm for the channel estimation of the OFDM system based on a pilot signal for the new generation of high data rate communication systems. In orthogonal frequency division multiplexing (OFDM) systems over fast-varying fading channels, channel estimation and tracking is generally carried out by transmitting known pilot symbols in given positions of the frequency-time grid. In this paper, we propose to derive an improved algorithm based on the calculation of the mean and the variance of the adjacent pilot signals for a specific distribution of the pilot signals in the OFDM frequency-time grid then calculating of the entire unknown channel coefficients from the equation of the mean and the variance. Simulation results shows that the performance of the OFDM system increase as the length of the channel increase where the accuracy of the estimated channel will be increased using this low complexity algorithm, also the number of the pilot signal needed to be inserted in the OFDM signal will be reduced which lead to increase in the throughput of the signal over the OFDM system in compared with other type of the distribution such as Comb type and Block type channel estimation.
Keywords: Channel estimation, orthogonal frequency divisionmultiplexing (OFDM), comb type channel estimation, block typechannel estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14161850 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9181849 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28131848 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl
Abstract:
Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.
Keywords: Average run length, Bernoulli CUSUM chart, beta binomial posterior predictive distribution, clinical indicator, health care organization, highest posterior density interval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8771847 Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source
Authors: Tusharkanta Das, Tumbanath Samantara, Sukanta Kumar Sahoo
Abstract:
Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.
Keywords: Heat transfer, radiation, MHD, free convection, porous medium, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8791846 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam
Abstract:
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581845 Estimation of Component Reusability through Reusability Metrics
Authors: Aditya Pratap Singh, Pradeep Tomar
Abstract:
Software reusability is an essential characteristic of Component-Based Software (CBS). The component reusability is an important assess for the effective reuse of components in CBS. The attributes of reusability proposed by various researchers are studied and four of them are identified as potential factors affecting reusability. This paper proposes metric for reusability estimation of black-box software component along with metrics for Interface Complexity, Understandability, Customizability and Reliability. An experiment is performed for estimation of reusability through a case study on a sample web application using a real world component.
Keywords: Component-based software, component reusability, customizability, interface complexity, reliability, understandability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30581844 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541843 Affine Projection Adaptive Filter with Variable Regularization
Authors: Young-Seok Choi
Abstract:
We propose two affine projection algorithms (APA) with variable regularization parameter. The proposed algorithms dynamically update the regularization parameter that is fixed in the conventional regularized APA (R-APA) using a gradient descent based approach. By introducing the normalized gradient, the proposed algorithms give birth to an efficient and a robust update scheme for the regularization parameter. Through experiments we demonstrate that the proposed algorithms outperform conventional R-APA in terms of the convergence rate and the misadjustment error.Keywords: Affine projection, regularization, gradient descent, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091842 Development of Cooling Demand by Computerize
Authors: Bobby Anak John, Zamri Noranai, Md. Norrizam Mohmad Jaat, Hamidon Salleh, Mohammad Zainal Md Yusof
Abstract:
Air conditioning is mainly use as human comfort cooling medium. It use more in high temperatures are country such as Malaysia. Proper estimation of cooling load will archive ideal temperature. Without proper estimation can lead to over estimation or under estimation. The ideal temperature should be comfort enough. This study is to develop a program to calculate an ideal cooling load demand, which is match with heat gain. Through this study, it is easy to calculate cooling load estimation. Objective of this study are to develop user-friendly and easy excess cooling load program. This is to insure the cooling load can be estimate by any of the individual rather than them using rule-of-thumb. Developed software is carryout by using Matlab-GUI. These developments are only valid for common building in Malaysia only. An office building was select as case study to verify the applicable and accuracy of develop software. In conclusion, the main objective has successfully where developed software is user friendly and easily to estimate cooling load demand.Keywords: Cooling Load, Heat Gain, Building and GUI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20401841 Comparison of the Parameter using ECG with Bisepctrum Parameter using EEG during General Anesthesia
Authors: Seong-wan Baik, Soo-young Ye, Byeong-cheol Choi, Gye-rok Jeon
Abstract:
The measurement of anesthetic depth is necessary in anesthesiology. NN10 is very simple method among the RR intervals analysis methods. NN10 parameter means the numbers of above the 10 ms intervals of the normal to normal RR intervals. Bispectrum analysis is defined as 2D FFT. EEG signal reflected the non-linear peristalsis phenomena according to the change brain function. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. In this paper, the relation between NN10 parameter using ECG and bisepctrum index using EEG is observed to estimate the depth of anesthesia during anesthesia and then we estimated the utility of the anesthetic.Keywords: Anesthesia, Bispectrum index, ECG, EEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731840 Iterative solutions to the linear matrix equation AXB + CXTD = E
Authors: Yongxin Yuan, Jiashang Jiang
Abstract:
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.Keywords: matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551839 Craniometric Analysis of Foramen Magnum for Estimation of Sex
Authors: Tanuj Kanchan, Anadi Gupta, Kewal Krishan
Abstract:
Human skull is shown to exhibit numerous sexually dimorphic traits. Estimation of sex is a challenging task especially when a part of skull is brought for medicolegal investigation. The present research was planned to evaluate the sexing potential of the dimensions of foramen magnum in forensic identification by craniometric analysis. Length and breadth of the foramen magnum was measured using Vernier calipers and the area of foramen magnum was calculated. The length, breadth, and area of foramen magnum were found to be larger in males than females. Sexual dimorphism index was calculated to estimate the sexing potential of each variable. The study observations are suggestive of the limited utility of the craniometric analysis of foramen magnum during the examination of skull and its parts in estimation of sex.
Keywords: Forensic Anthropology, Skeletal remains, Identification, Sex estimation, Foramen magnum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287