Search results for: Evacuation simulation
3316 Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation
Authors: Hiroyuki Nishida, Taku Nonomura, Takashi Abe
Abstract:
Wall-surface jet induced by the dielectric barrier discharge (DBD) has been proposed as an actuator for active flow control in aerodynamic applications. Discharge plasma evolution of the DBD plasma actuator was simulated based on a simple fluid model, in which the electron, one type of positive ion and negative ion were taken into account. Two-dimensional simulation was conducted, and the results are in agreement with the insights obtained from experimental studies. The simulation results indicate that the discharge mode changes depending on applied voltage slope; when the applied voltage is positive-going with high applied voltage slope, the corona-type discharge mode turns into the streamer-type discharge mode and the threshold voltage slope is around 300 kV/ms in this simulation. The characteristics of the electrohydrodynamic (EHD) force, which is the source of the wall-surface jet, also change depending on the discharge mode; the tentative peak value of the EHD force during the positive-going voltage phase is saturated by the periodical formation of the streamer-type discharge.Keywords: Dielectric barrier discharge, Plasma actuator, Fluid simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24673315 AGENTMAP: A Conceptual Meta-Model of Interacting Simulations
Authors: Thomas M. Prinz Wilhelm R. Rossak, Kai Gebhardt
Abstract:
A straightforward and intuitive combination of single simulations into an aggregated master-simulation is not trivial. There are lots of problems, which trigger-specific difficulties during the modeling and execution of such a simulation. In this paper we identify these problems and aim to solve them by mapping the task to the field of multi agent systems. The solution is a new meta-model named AGENTMAP, which is able to mitigate most of the problems and to support intuitive modeling at the same time. This meta-model will be introduced and explained on basis of an example from the e-commerce domain.
Keywords: Multi Agent System, Agent-based Simulation, Distributed Systems, Meta-models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18773314 MONARC: A Case Study on Simulation Analysis for LHC Activities
Authors: Ciprian Dobre
Abstract:
The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18103313 Modeling and Simulation of Two-Phase Interleaved Boost Converter Using Open-Source Software Scilab/Xcos
Authors: Yin Yin Phyo, Tun Lin Naing
Abstract:
This paper investigated the simulation of two-phase interleaved boost converter (IBC) with free and open-source software Scilab/Xcos. By using interleaved method, it can reduce current stress on components, components size, input current ripple and output voltage ripple. The required mathematical model is obtained from the equivalent circuit of its different four modes of operation for simulation. The equivalent circuits are considered in continuous conduction mode (CCM). The average values of the system variables are derived from the state-space equation to find the equilibrium point. Scilab is now becoming more and more popular among students, engineers and scientists because it is open-source software and free of charge. It gives a great convenience because it has powerful computation and simulation function. The waveforms of output voltage, input current and inductors current are obtained by using Scilab/Xcos.
Keywords: Two-phase boost converter, continuous conduction mode, free and open-source, interleaved method, dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9433312 Design of Nonlinear Robust Control in a Class of Structurally Stable Functions
Authors: V. Ten
Abstract:
An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.
Keywords: Catastrophes, robust control, simulation, uncertain parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12913311 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method
Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola
Abstract:
In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.
Keywords: Constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36153310 Numerical Simulation of Electric and Hydrodynamic Fields Distribution in a Dielectric Liquids Electrofilter Cell
Authors: Narcis C. Ostahie, Tudor Sajin
Abstract:
In this paper a numerical simulation of electric and hydrodynamic fields distribution in an electrofilter for dielectric liquids cell is made. The simulation is made with the purpose to determine the trajectory of particles that moves under the action of external force in an electric and hydrodynamic field created inside of an electrofilter for dielectric liquids. Particle trajectory is analyzed for a dielectric liquid-solid particles suspension.Keywords: Dielectric liquids, electrohydrodynamics, energy, high voltage, particles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16133309 A New Heuristic Statistical Methodology for Optimizing Queuing Networks Using Discreet Event Simulation
Authors: Mohamad Mahdavi
Abstract:
Most of the real queuing systems include special properties and constraints, which can not be analyzed directly by using the results of solved classical queuing models. Lack of Markov chains features, unexponential patterns and service constraints, are the mentioned conditions. This paper represents an applied general algorithm for analysis and optimizing the queuing systems. The algorithm stages are described through a real case study. It is consisted of an almost completed non-Markov system with limited number of customers and capacities as well as lots of common exception of real queuing networks. Simulation is used for optimizing this system. So introduced stages over the following article include primary modeling, determining queuing system kinds, index defining, statistical analysis and goodness of fit test, validation of model and optimizing methods of system with simulation.
Keywords: Estimation, queuing system, simulation model, probability distribution, non-Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193308 EMOES: Eye Motion and Ocular Expression Simulator
Authors: Nicoletta Adamo-Villani, Gerardo Beni, Jeremy White
Abstract:
We introduce, a new interactive 3D simulation system of ocular motion and expressions suitable for: (1) character animation applications to game design, film production, HCI (Human Computer Interface), conversational animated agents, and virtual reality; (2) medical applications (ophthalmic neurological and muscular pathologies: research and education); and (3) real time simulation of unconscious cognitive and emotional responses (for use, e.g., in psychological research). The system is comprised of: (1) a physiologically accurate parameterized 3D model of the eyes, eyelids, and eyebrow regions; and (2) a prototype device for realtime control of eye motions and expressions, including unconsciously produced expressions, for application as in (1), (2), and (3) above. The 3D eye simulation system, created using state-of-the-art computer animation technology and 'optimized' for use with an interactive and web deliverable platform, is, to our knowledge, the most advanced/realistic available so far for applications to character animation and medical pedagogy.
Keywords: 3D animation, HCI, medical simulation, ocularmotion and expression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703307 Simulation and Experimentation on the Contact Width of New Metal Gasket for Asbestos Substitution
Authors: Moch. Agus Choiron, Yoshihiro Kurata, Shigeyuki Haruyama, Ken Kaminishi
Abstract:
The contact width is important design parameter for optimizing the design of new metal gasket for asbestos substitution gasket. The contact width is found have relationship with the helium leak quantity. In the increasing of axial load value, the helium leak quantity is decreasing and the contact width is increasing. This study provides validity method using simulation analysis and the result is compared to experimental using pressure sensitive paper. The results denote similar trend data between simulation and experimental result. Final evaluation is determined by helium leak quantity to check leakage performance of gasket design. Considering the phenomena of position change on the convex contact, it can be developed the optimization of gasket design by increasing contact width.Keywords: contact width, simulation, pressure sensitive paper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19453306 Learning a Song: an ACT-R Model
Authors: Belkacem Chikhaoui, Helene Pigot, Mathieu Beaudoin, Guillaume Pratte, Philippe Bellefeuille, Fernando Laudares
Abstract:
The way music is interpreted by the human brain is a very interesting topic, but also an intricate one. Although this domain has been studied for over a century, many gray areas remain in the understanding of music. Recent advances have enabled us to perform accurate measurements of the time taken by the human brain to interpret and assimilate a sound. Cognitive computing provides tools and development environments that facilitate human cognition simulation. ACT-R is a cognitive architecture which offers an environment for implementing human cognitive tasks. This project combines our understanding of the music interpretation by a human listener and the ACT-R cognitive architecture to build SINGER, a computerized simulation for listening and recalling songs. The results are similar to human experimental data. Simulation results also show how it is easier to remember short melodies than long melodies which require more trials to be recalled correctly.
Keywords: Computational model, cognitive modeling, simulation, learning, song, music.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15663305 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model
Authors: M. Elkhoury
Abstract:
A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14693304 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen
Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang
Abstract:
In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20233303 Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse
Authors: Batin Latif Aylak, Bernd Noche, M. Baran Cantepe, Aydin Karakaya
Abstract:
Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. The ultra-light overhead conveyor systems always must be integrated with a logistical process by finding a best way for a cheaper material flow in order to guarantee precise and fast workflows. This paper analyzes the process of an ultra-light overhead conveyor system using necessary assumptions. The analysis consists of three scenarios. These scenarios are based on raising the vehicle speeds with equal increments at each case. The correlation between the vehicle speed and system throughput is investigated. A discrete-event simulation model of an ultra-light overhead conveyor system is constructed using DOSIMIS-3 software to implement three scenarios. According to simulation results; the optimal scenario, hence the optimal vehicle speed, is found out among three scenarios. This simulation model demonstrates the effect of increased speed on the system throughput.
Keywords: Logistics, material flow, simulation, ultra-light overhead conveyor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25623302 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot
Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux
Abstract:
One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9273301 Development of a RAM Simulation Model for Acid Gas Removal System
Authors: Ainul Akmar Mokhtar, Masdi Muhammad, Hilmi Hussin, Mohd Amin Abdul Majid
Abstract:
A reliability, availability and maintainability (RAM) model has been built for acid gas removal plant for system analysis that will play an important role in any process modifications, if required, for achieving its optimum performance. Due to the complexity of the plant, the model was based on a Reliability Block Diagram (RBD) with a Monte Carlo simulation engine. The model has been validated against actual plant data as well as local expert opinions, resulting in an acceptable simulation model. The results from the model showed that the operation and maintenance can be further improved, resulting in reduction of the annual production loss.
Keywords: Acid gas removal plant, RAM model, Reliabilityblock diagram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23413300 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamics
Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao
Abstract:
This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, Saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effects of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.
Keywords: Asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4573299 Reliability Analysis of Underground Pipelines Using Subset Simulation
Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li
Abstract:
An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.
Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35523298 Computational Evaluation of a C-A Heat Pump
Authors: Young-Jin Baik, Minsung Kim, Young-Soo Lee, Ki-Chang Chang, Seong-Ryong Park
Abstract:
The compression-absorption heat pump (C-A HP), one of the promising heat recovery equipments that make process hot water using low temperature heat of wastewater, was evaluated by computer simulation. A simulation program was developed based on the continuity and the first and second laws of thermodynamics. Both the absorber and desorber were modeled using UA-LMTD method. In order to prevent an unfeasible temperature profile and to reduce calculation errors from the curved temperature profile of a mixture, heat loads were divided into lots of segments. A single-stage compressor was considered. A compressor cooling load was also taken into account. An isentropic efficiency was computed from the map data. Simulation conditions were given based on the system consisting of ordinarily designed components. The simulation results show that most of the total entropy generation occurs during the compression and cooling process, thus suggesting the possibility that system performance can be enhanced if a rectifier is introduced.Keywords: Waste heat recovery, Heat Pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17183297 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields
Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-xin Wang
Abstract:
The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.
Keywords: Supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings (FW-H) equations, nozzle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26173296 A Method for 3D Mesh Adaptation in FEA
Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma
Abstract:
The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.
Keywords: Finite element, discretization errors, adaptivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14773295 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.
Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9453294 Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies
Authors: Minky Son, Chanin Park, Ayoung Baek, Shalini John, Keun Woo Lee
Abstract:
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we performed structure-based pharmacophore modeling combined with molecular dynamics (MD) simulation. Four HMGR inhibitors were used for MD simulation and representative structure of each simulation were selected by clustering analysis. Four structure-based pharmacophore models were generated using the representative structure. The generated models were validated used in virtual screening to find novel scaffolds for inhibiting HMGR. The screened compounds were filtered by applying drug-like properties and used in molecular docking. Finally, four hit compounds were obtained and these complexes were refined using energy minimization. These compounds might be potential leads to design novel HMGR inhibitor.
Keywords: Anti-hypercholesterolemia drug, HMGR inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19473293 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions
Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid
Abstract:
It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.
Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21833292 Hydrodynamic Simulation of Fixed Bed GTL Reactor Using CFD
Authors: Sh. Shahhosseini, S. Alinia, M. Irani
Abstract:
In this work, axisymetric CFD simulation of fixed bed GTL reactor has been conducted, using computational fluid dynamics (CFD). In fixed bed CFD modeling, when N (tube-to-particle diameter ratio) has a large value, it is common to consider the packed bed as a porous media. Synthesis gas (a mixture of predominantly carbon monoxide and hydrogen) was fed to the reactor. The reactor length was 20 cm, divided to three sections. The porous zone was in the middle section of the reactor. The model equations were solved employing finite volume method. The effects of particle diameter, bed voidage, fluid velocity and bed length on pressure drop have been investigated. Simulation results showed these parameters could have remarkable impacts on the reactor pressure drop.Keywords: GTL Process, Fixed bed reactor, Pressure drop, CFDsimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23693291 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops
Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding
Abstract:
Background: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, for which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. Objective: This article tried to optimize the layout of a troops’ cafeteria and to improve the overall efficiency of the dining process. Methods: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. Results: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interferences reduced as well, which verified corresponding simulation results. Conclusion: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.
Keywords: Troops’ cafeteria, layout optimization, dining efficiency, AnyLogic simulation, field experiment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5063290 Flocking Behaviors for Multiple Groups with Heterogeneous Agents
Authors: Jae Moon Lee
Abstract:
Most of researches for conventional simulations were studied focusing on flocks with a single species. While there exist the flocking behaviors with a single species in nature, the flocking behaviors are frequently observed with multi-species. This paper studies on the flocking simulation for heterogeneous agents. In order to simulate the flocks for heterogeneous agents, the conventional method uses the identifier of flock, while the proposed method defines the feature vector of agent and uses the similarity between agents by comparing with those feature vectors. Based on the similarity, the paper proposed the attractive force and repulsive force and then executed the simulation by applying two forces. The results of simulation showed that flock formation with heterogeneous agents is very natural in both cases. In addition, it showed that unlike the existing method, the proposed method can not only control the density of the flocks, but also be possible for two different groups of agents to flock close to each other if they have a high similarity.Keywords: Flocking behavior, heterogeneous agents, similarity, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15983289 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation
Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang
Abstract:
Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13893288 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13133287 Microscopic Simulation of Toll Plaza Safety and Operations
Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang
Abstract:
The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.
Keywords: Microscopic simulation, toll plaza, surrogate safety, application programming interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787