Search results for: Computer network simulation software
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8043

Search results for: Computer network simulation software

6303 AMBICOM: An Ambient Computing Middleware Architecture for Heterogeneous Environments

Authors: Ekrem Aksoy, Nihat Adar, Selçuk Canbek

Abstract:

Ambient Computing or Ambient Intelligence (AmI) is emerging area in computer science aiming to create intelligently connected environments and Internet of Things. In this paper, we propose communication middleware architecture for AmI. This middleware architecture addresses problems of communication, networking, and abstraction of applications, although there are other aspects (e.g. HCI and Security) within general AmI framework. Within this middleware architecture, any application developer might address HCI and Security issues with extensibility features of this platform.

Keywords: AmI, ambient computing, middleware, distributedsystems, software-defined networking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
6302 A New Distribution Network Reconfiguration Approach using a Tree Model

Authors: E. Dolatdar, S. Soleymani, B. Mozafari

Abstract:

Power loss reduction is one of the main targets in power industry and so in this paper, the problem of finding the optimal configuration of a radial distribution system for loss reduction is considered. Optimal reconfiguration involves the selection of the best set of branches to be opened ,one each from each loop, for reducing resistive line losses , and reliving overloads on feeders by shifting the load to adjacent feeders. However ,since there are many candidate switching combinations in the system ,the feeder reconfiguration is a complicated problem. In this paper a new approach is proposed based on a simple optimum loss calculation by determining optimal trees of the given network. From graph theory a distribution network can be represented with a graph that consists a set of nodes and branches. In fact this problem can be viewed as a problem of determining an optimal tree of the graph which simultaneously ensure radial structure of each candidate topology .In this method the refined genetic algorithm is also set up and some improvements of algorithm are made on chromosome coding. In this paper an implementation of the algorithm presented by [7] is applied by modifying in load flow program and a comparison of this method with the proposed method is employed. In [7] an algorithm is proposed that the choice of the switches to be opened is based on simple heuristic rules. This algorithm reduce the number of load flow runs and also reduce the switching combinations to a fewer number and gives the optimum solution. To demonstrate the validity of these methods computer simulations with PSAT and MATLAB programs are carried out on 33-bus test system. The results show that the performance of the proposed method is better than [7] method and also other methods.

Keywords: Distribution System, Reconfiguration, Loss Reduction , Graph Theory , Optimization , Genetic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3782
6301 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification

Authors: Essam Al-Daoud

Abstract:

Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.

Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
6300 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
6299 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
6298 Modernization of the Economic Price Adjustment Software

Authors: Roger L Goodwin

Abstract:

The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for longterm contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.

Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
6297 Design and Realization of an Electronic Load for a PEM Fuel Cell

Authors: Arafet Bouaicha, Hatem Allegui, Amar Rouane, El-Hassane Aglzim, Abdelkader Mami

Abstract:

In order to further understand the behavior of PEM fuel cell and optimize their performance, it is necessary to perform measurements in real time. The internal impedance measurement by electrochemical impedance spectroscopy (EIS) is of great importance. In this work, we present the impedance measurement method of a PEM fuel cell by electrochemical impedance spectroscopy method and the realization steps of electronic load for this measuring technique implementation. The theoretical results are obtained from the simulation of software PSPICE® and experimental tests are carried out using the Ballard Nexa™ PEM fuel cell system.

Keywords: Electronic load, MOS transistor, PEM fuel cell, Impedance measurement, Electrochemical Impedance Spectroscopy (EIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
6296 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
6295 Computer Models of the Vestibular Head Tilt Response, and Their Relationship to EVestG and Meniere's Disease

Authors: Daniel Heibert, Brian Lithgow, Kerry Hourigan

Abstract:

This paper attempts to explain response components of Electrovestibulography (EVestG) using a computer simulation of a three-canal model of the vestibular system. EVestG is a potentially new diagnostic method for Meniere's disease. EVestG is a variant of Electrocochleography (ECOG), which has been used as a standard method for diagnosing Meniere's disease - it can be used to measure the SP/AP ratio, where an SP/AP ratio greater than 0.4-0.5 is indicative of Meniere-s Disease. In EVestG, an applied head tilt replaces the acoustic stimulus of ECOG. The EVestG output is also an SP/AP type plot, where SP is the summing potential, and AP is the action potential amplitude. AP is thought of as being proportional to the size of a population of afferents in an excitatory neural firing state. A simulation of the fluid volume displacement in the vestibular labyrinth in response to various types of head tilts (ipsilateral, backwards and horizontal rotation) was performed, and a simple neural model based on these simulations developed. The simple neural model shows that the change in firing rate of the utricle is much larger in magnitude than the change in firing rates of all three semi-circular canals following a head tilt (except in a horizontal rotation). The data suggests that the change in utricular firing rate is a minimum 2-3 orders of magnitude larger than changes in firing rates of the canals during ipsilateral/backward tilts. Based on these results, the neural response recorded by the electrode in our EVestG recordings is expected to be dominated by the utricle in ipsilateral/backward tilts (It is important to note that the effect of the saccule and efferent signals were not taken into account in this model). If the utricle response dominates the EVestG recordings as the modeling results suggest, then EVestG has the potential to diagnose utricular hair cell damage due to a viral infection (which has been cited as one possible cause of Meniere's Disease).

Keywords: Diagnostic, endolymph hydrops, Meniere's disease, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
6294 Investigating Quality Metrics for Multimedia Traffic in OLSR Routing Protocol

Authors: B. Prabhakara Rao, M. V. H. Bhaskara Murthy

Abstract:

An Ad hoc wireless network comprises of mobile terminals linked and communicating with each other sans the aid of traditional infrastructure. Optimized Link State Protocol (OLSR) is a proactive routing protocol, in which routes are discovered/updated continuously so that they are available when needed. Hello messages generated by a node seeks information about its neighbor and if the latter fails to respond to a specified number of hello messages regulated by neighborhood hold time, the node is forced to assume that the neighbor is not in range. This paper proposes to evaluate OLSR routing protocol in a random mobility network having various neighborhood hold time intervals. The throughput and delivery ratio are also evaluated to learn about its efficiency for multimedia loads.

Keywords: Ad hoc Network, Optimized Link State Routing, Multimedia traffic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
6293 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal

Abstract:

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.

Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
6292 Modeling Jordan University of Science and Technology Parking Using Arena Program

Authors: T. Qasim, M. Alqawasmi, M. Hawash, M. Betar, W. Qasim

Abstract:

Over the last decade, the over population that has happened in urban areas has been reflecting on the services that various local institutions provide to car users in the form of car parks, which is becoming a daily necessity in our lives. This study focuses on car parks at Jordan University of Science and Technology, in Irbid, Jordan, to understand the university parking needs. Data regarding arrival and departure times of cars and the parking utilization were collected, to find various options that the university can implement to solve and develop an efficient car parking system. Arena software was used to simulate a parking model. This model allows measuring the different solutions that solve the parking problem at Jordan University of Science and Technology.

Keywords: Car park, modeling, service time, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
6291 SOA and BPM Partnership: A Paradigm for Dynamic and Flexible Process and I.T. Management

Authors: Imran Sarwar Bajwa, Rafaqut Kazmi, Shahzad Mumtaz, M. Abbas Choudhary, M. Shahid Naweed

Abstract:

Business Process Management (BPM) helps in optimizing the business processes inside an enterprise. But BPM architecture does not provide any help for extending the enterprise. Modern business environments and rapidly changing technologies are asking for brisk changes in the business processes. Service Oriented Architecture (SOA) can help in enabling the success of enterprise-wide BPM. SOA supports agility in software development that is directly related to achieve loose coupling of interacting software agents. Agility is a premium concern of the current software designing architectures. Together, BPM and SOA provide a perfect combination for enterprise computing. SOA provides the capabilities for services to be combined together and to support and create an agile, flexible enterprise. But there are still many questions to answer; BPM is better or SOA? and what is the future track of BPM and SOA? This paper tries to answer some of these important questions.

Keywords: Information Systems, BPM, SOA, Process management, IT management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
6290 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection

Authors: D. Naga Ravi Kiran, C. G. Dethe

Abstract:

Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.

Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
6289 PP-FSM: Peer to Peer File Share for Multimedia

Authors: Arsalan Ali Shah, Zafar I. Malik, Shaukat Ali

Abstract:

Peer-to-Peer (P2P) is a self-organizing resource sharing network with no centralized authority or infrastructure, which makes it unpredictable and vulnerable. In this paper, we propose architecture to make the peer-to-peer network more centralized, predictable, and safer to use by implementing trust and stopping free riding.

Keywords: File Share, Free Riding, Peer-to-Peer, Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
6288 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
6287 An Efficient Proxy Signature Scheme Over a Secure Communications Network

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Proxy signature scheme permits an original signer to delegate his/her signing capability to a proxy signer, and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on the discrete logarithm problem.

Keywords: Proxy signature, warrant partial delegation, key agreement, discrete logarithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
6286 Uniformity of Dose Distribution in Radiation Fields Surrounding the Spine using Film Dosimetry and Comparison with 3D Treatment Planning Software

Authors: Sadegh Masoudi , Vahid Fayaz , Hassan Zandi, Asieh Tavakol

Abstract:

The overall penumbra is usually defined as the distance, p20–80, separating the 20% and 80% of the dose on the beam axis at the depth of interest. This overall penumbra accounts also for the fact that some photons emitted by the distal parts of the source are only partially attenuated by the collimator. Medulloblastoma is the most common type of childhood brain tumor and often spreads to the spine. Current guidelines call for surgery to remove as much of the tumor as possible, followed by radiation of the brain and spinal cord, and finally treatment with chemotherapy. The purpose of this paper was to present results on an Uniformity of dose distribution in radiation fields surrounding the spine using film dosimetry and comparison with 3D treatment planning software.

Keywords: Absorbed Dose , Spine , Radiotherapy, 3D treatment planning software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
6285 Ontology-based Domain Modelling for Consistent Content Change Management

Authors: Muhammad Javed, Yalemisew M. Abgaz, Claus Pahl

Abstract:

Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces.

Keywords: Consistent Content Management, Impact Categorisation, Trace Model, Ontology Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
6284 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
6283 Effective Methodology for Security Risk Assessment of Computer Systems

Authors: Daniel F. García, Adrián Fernández

Abstract:

Today, computer systems are more and more complex and support growing security risks. The security managers need to find effective security risk assessment methodologies that allow modeling well the increasing complexity of current computer systems but also maintaining low the complexity of the assessment procedure. This paper provides a brief analysis of common security risk assessment methodologies leading to the selection of a proper methodology to fulfill these requirements. Then, a detailed analysis of the most effective methodology is accomplished, presenting numerical examples to demonstrate how easy it is to use.

Keywords: Computer security, qualitative and quantitative methods, risk assessment methodologies, security risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
6282 Design Optimization for Efficient Erbium-Doped Fiber Amplifiers

Authors: Parekhan M. Aljaff, Banaz O. Rasheed

Abstract:

The exact gain shape profile of erbium doped fiber amplifiers (EDFA`s) are depends on fiber length and Er3 ion densities. This paper optimized several of erbium doped fiber parameters to obtain high performance characteristic at pump wavelengths of λp= 980 nm and λs= 1550 nm for three different pump powers. The maximum gain obtained for pump powers (10, 30 and 50mw) is nearly (19, 30 and 33 dB) at optimizations. The required numerical aperture NA to obtain maximum gain becomes less when pump power increased. The amplifier gain is increase when Er+3doped near the center of the fiber core. The simulation has been done by using optisystem 5.0 software (CAD for Photonics, a license product of a Canadian based company) at 2.5 Gbps.

Keywords: EDFA, Erbium Doped Fiber, optimization OpticalAmplifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3491
6281 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: Bioheat transfer, Electrode, Neuroprosthetics, TENS, Transcutaneous stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
6280 Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation

Authors: R. S. Al Abri, M. H. Albadi, M. H. Al Abri, U. K. Al Rasbi, M. H. Al Hasni, S. M. Al Shidi

Abstract:

This paper presents an analysis study on the impacts of the changes of the capacitor banks, the loss of a transformer, and the installation of distributed generation on the voltage total harmonic distortion and harmonic resonance. The study is applied in a real system in Oman, Sohar Industrial Port–C Substation Network. Frequency scan method and Fourier series analysis method are used with the help of EDSA software. Moreover, the results are compared with limits specified by national Oman distribution code.

Keywords: Power quality, capacitor bank, voltage total harmonics distortion, harmonic resonance, frequency scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
6279 Thermal Radiation and Noise Safety Assessment of an Offshore Platform Flare Stack as Sudden Emergency Relief Takes Place

Authors: Lai Xuejiang, Huang Li, Yang Yi

Abstract:

To study the potential hazards of the sudden emergency relief of flare stack, the thermal radiation and noise calculation of flare stack is carried out by using Flaresim program 2.0. Thermal radiation and noise analysis should be considered as the sudden emergency relief takes place. According to the Flaresim software simulation results, the thermal radiation and noise meet the requirement.

Keywords: Flare stack, thermal radiation, noise, safety assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
6278 Stochastic Estimation of Wireless Traffic Parameters

Authors: Somenath Mukherjee, Raj Kumar Samanta, Gautam Sanyal

Abstract:

Different services based on different switching techniques in wireless networks leads to drastic changes in the properties of network traffic. Because of these diversities in services, network traffic is expected to undergo qualitative and quantitative variations. Hence, assumption of traffic characteristics and the prediction of network events become more complex for the wireless networks. In this paper, the traffic characteristics have been studied by collecting traces from the mobile switching centre (MSC). The traces include initiation and termination time, originating node, home station id, foreign station id. Traffic parameters namely, call interarrival and holding times were estimated statistically. The results show that call inter-arrival and distribution time in this wireless network is heavy-tailed and follow gamma distributions. They are asymptotically long-range dependent. It is also found that the call holding times are best fitted with lognormal distribution. Based on these observations, an analytical model for performance estimation is also proposed.

Keywords: Wireless networks, traffic analysis, long-range dependence, heavy-tailed distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
6277 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
6276 Numerical Simulation for a Shallow Braced Excavation of Campus Building

Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu

Abstract:

In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.

Keywords: Excavation, numerical simulation, rido, retaining structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
6275 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: Carbon dioxide, emission modeling, light rail, microscopic model, traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
6274 Multilevel Activation Functions For True Color Image Segmentation Using a Self Supervised Parallel Self Organizing Neural Network (PSONN) Architecture: A Comparative Study

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

The paper describes a self supervised parallel self organizing neural network (PSONN) architecture for true color image segmentation. The proposed architecture is a parallel extension of the standard single self organizing neural network architecture (SONN) and comprises an input (source) layer of image information, three single self organizing neural network architectures for segmentation of the different primary color components in a color image scene and one final output (sink) layer for fusion of the segmented color component images. Responses to the different shades of color components are induced in each of the three single network architectures (meant for component level processing) by applying a multilevel version of the characteristic activation function, which maps the input color information into different shades of color components, thereby yielding a processed component color image segmented on the basis of the different shades of component colors. The number of target classes in the segmented image corresponds to the number of levels in the multilevel activation function. Since the multilevel version of the activation function exhibits several subnormal responses to the input color image scene information, the system errors of the three component network architectures are computed from some subnormal linear index of fuzziness of the component color image scenes at the individual level. Several multilevel activation functions are employed for segmentation of the input color image scene using the proposed network architecture. Results of the application of the multilevel activation functions to the PSONN architecture are reported on three real life true color images. The results are substantiated empirically with the correlation coefficients between the segmented images and the original images.

Keywords: Colour image segmentation, fuzzy set theory, multi-level activation functions, parallel self-organizing neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022