Search results for: Image Transform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2128

Search results for: Image Transform

448 An Efficient and Generic Hybrid Framework for High Dimensional Data Clustering

Authors: Dharmveer Singh Rajput , P. K. Singh, Mahua Bhattacharya

Abstract:

Clustering in high dimensional space is a difficult problem which is recurrent in many fields of science and engineering, e.g., bioinformatics, image processing, pattern reorganization and data mining. In high dimensional space some of the dimensions are likely to be irrelevant, thus hiding the possible clustering. In very high dimensions it is common for all the objects in a dataset to be nearly equidistant from each other, completely masking the clusters. Hence, performance of the clustering algorithm decreases. In this paper, we propose an algorithmic framework which combines the (reduct) concept of rough set theory with the k-means algorithm to remove the irrelevant dimensions in a high dimensional space and obtain appropriate clusters. Our experiment on test data shows that this framework increases efficiency of the clustering process and accuracy of the results.

Keywords: High dimensional clustering, sub-space, k-means, rough set, discernibility matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
447 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
446 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer

Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod

Abstract:

To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.  

Keywords: Inertial confinement fusion, Mach-Zehnder interferometer, Digital holographic microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
445 Video Quality Assessment using Visual Attention Approach for Sign Language

Authors: Julia Kucerova, Jaroslav Polec, Darina Tarcsiova

Abstract:

Visual information is very important in human perception of surrounding world. Video is one of the most common ways to capture visual information. The video capability has many benefits and can be used in various applications. For the most part, the video information is used to bring entertainment and help to relax, moreover, it can improve the quality of life of deaf people. Visual information is crucial for hearing impaired people, it allows them to communicate personally, using the sign language; some parts of the person being spoken to, are more important than others (e.g. hands, face). Therefore, the information about visually relevant parts of the image, allows us to design objective metric for this specific case. In this paper, we present an example of an objective metric based on human visual attention and detection of salient object in the observed scene.

Keywords: sign language, objective video quality, visual attention, saliency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
444 5iD Viewer - Observation of Fish School Behaviour in Labyrinths and Use of Semantic and Syntactic Entropy for School Structure Definition

Authors: Dalibor Štys, Dalibor Štys Jr., Jana Pečenková, Kryštof M. Štys, Maryia Chkalova, Petr Kouba, Aliaksandr Pautsina, Denis Durniev, Tomáš Náhlík, Petr Císař

Abstract:

In this article is reported a construction and some properties of the 5iD viewer, the system recording simultaneously 5 views of a given experimental object. Properties of the system are demonstrated on the analysis of fish schooling behaviour. It is demonstrated the method of instrument calibration which allows inclusion of image distortion and it is proposed and partly tested also the method of distance assessment in the case that only two opposite cameras are available. Finally, we demonstrate how the state trajectory of the behaviour of the fish school may be constructed from the entropy of the system.

Keywords: 3D positioning, school behavior, distance calibration, space vision, space distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
443 Temperature Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat vs. Open Flame

Authors: Caighley Logan, Suzzanne McColl

Abstract:

The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FTIR), and X-Ray Fluorescence (XRF), the data were collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (2.5 m x 2.4 m) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p =< 0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.

Keywords: Forensic anthropology, thermal alterations, porcine bone, FTIR, XRF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212
442 Development and Evaluation of a Dynamic Cardiac Phantom for use in Nuclear Medicine

Authors: Marcos A. Dullius, Ramon C. Fernandes, Divanízia N. Souza

Abstract:

The aim of this study was to develop a dynamic cardiac phantom for quality control in myocardial scintigraphy. The dynamic heart phantom constructed only contained the left ventricle, made of elastic material (latex), comprising two cavities: one internal and one external. The data showed a non-significant variation in the values of left ventricular ejection fraction (LVEF) obtained by varying the heart rate. It was also possible to evaluate the ejection fraction (LVEF) through different arrays of image acquisition and to perform an intercomparison of LVEF by two different scintillation cameras. The results of the quality control tests were satisfactory, showing that they can be used as parameters in future assessments. The new dynamic heart phantom was demonstrated to be effective for use in LVEF measurements. Therefore, the new heart simulator is useful for the quality control of scintigraphic cameras.

Keywords: sheart, nuclear medicine, phantom

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501
441 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
440 An Efficient Obstacle Detection Algorithm Using Colour and Texture

Authors: Chau Nguyen Viet, Ian Marshall

Abstract:

This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.

Keywords: Colour, texture, classification, obstacle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
439 Optical Limiting Characteristics of Core-Shell Nanoparticles

Authors: G.Vinitha, A.Ramalingam

Abstract:

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Keywords: hydrothermal method, optical limiting devicesseeded polymerization technique, three-photon type absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
438 Vision-based Network System for Industrial Applications

Authors: Taweepol Suesut, Arjin Numsomran, Vittaya Tipsuwanporn

Abstract:

This paper presents the communication network for machine vision system to implement to control systems and logistics applications in industrial environment. The real-time distributed over the network is very important for communication among vision node, image processing and control as well as the distributed I/O node. A robust implementation both with respect to camera packaging and data transmission has been accounted. This network consists of a gigabit Ethernet network and a switch with integrated fire-wall is used to distribute the data and provide connection to the imaging control station and IEC-61131 conform signal integration comprising the Modbus TCP protocol. The real-time and delay time properties each part on the network were considered and worked out in this paper.

Keywords: Distributed Real-Time Automation, Machine Visionand Ethernet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
437 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
436 Segmentation of Cardiac Images by the Force Field Driven Speed Term

Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun

Abstract:

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
435 Strategy Research for the Development of Thematic Commercial Streets - Based On the Survey of Eight Typical Thematic Commercial Streets in Harbin

Authors: Wang Zhenzhen, Wang Xu, Hong Liangping

Abstract:

The construction of thematic commercial streets has been on the hotspot with the rapid development of cities. In order to improve the image and competitiveness of cities, many cities are building or rebuilding thematic commercial streets. However, many contradictions and problems have emerged during this process. Therefore, it is significant, for both the practice and the research, to analyze the development of thematic commercial streets and provide some useful suggestions. Through the deep research and comparative study of the eight typical thematic commercial streets in Harbin, this paper summarize the current situations, laws and influencing factors of the development of these streets, and then put forward some suggestions about the plan, constructions and developments of the thematic commercial streets.

Keywords: Thematic commercial streets, laws of the development, influence factors, the constructions and developments, degrees of aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
434 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2764
433 Marketing Strategy Analysis of Boon Rawd Brewery Company

Authors: Sinee Sankrusme

Abstract:

Boon Rawd Brewery is a beer company based in Thailand that has an exemplary image, both as a good employer and a well-managed company with a strong record of social responsibility. The most famous of the company’s products is Singha beer. To study the company’s marketing strategy, a case study analysis was conducted together with qualitative research methods. The study analyzed the marketing strategy of Boon Rawd Brewery before the liberalization of the liquor market in 2000. The company’s marketing strategies consisted of the following: product line strategy, product development strategy, block channel strategy, media strategy, trade strategy, and consumer incentive strategy. Additionally, the company employed marketing mix strategy based on the 4Ps: product, price, promotion and place (of distribution).

Keywords: Beer, Boon Rawd Brewery Company, Marketing Strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8837
432 High Capacity Reversible Watermarking through Interpolated Error Shifting

Authors: Hae-Yeoun Lee

Abstract:

Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error pre-compensation. The intensity of a pixel is interpolated from the intensities of neighboring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error pre-compensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.

Keywords: Reversible watermarking, High capacity, High quality, Interpolated error shifting, Error pre-compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
431 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
430 Functional Food Knowledge and Perceptions among Young Consumers in Malaysia

Authors: G. Rezai, P.K.Teng, Z. Mohamed, M.N Shamsudin

Abstract:

Changing in consumers lifestyles and food consumption patterns provide a great opportunity in developing the functional food sector in Malaysia. There is only a little knowledge about whether Malaysian consumers are aware of functional food and if so what image consumers have of this product. The objective of this research is to determine the extent to which selected socioeconomic characteristics and attitudes influence consumers- awareness of functional food. A survey was conducted in the Klang Valley, Malaysia where 439 respondents were interviewed using a structured questionnaire. The result shows that most respondents have a positive attitude towards functional food. For the binary logistic estimation, the results indicate that age, income and other factors such as concern about food safety, subscribing to cooking or health magazines, being a vegetarian and consumers who have been involved in a food production company significantly influence Malaysian consumers- awareness towards functional food.

Keywords: Binary logistic model, functional foods, knowledge and awareness, perception

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5783
429 Analysis and Measuring Surface Roughness of Nonwovens Using Machine Vision Method

Authors: Dariush Semnani, Javad Yekrang, Hossein Ghayoor

Abstract:

Concerning the measurement of friction properties of textiles and fabrics using Kawabata Evaluation System (KES), whose output is constrained to the surface friction factor of fabric, and no other data would be generated; this research has been conducted to gain information about surface roughness regarding its surface friction factor. To assess roughness properties of light nonwovens, a 3-dimensional model of a surface has been simulated with regular sinuous waves through it as an ideal surface. A new factor was defined, namely Surface Roughness Factor, through comparing roughness properties of simulated surface and real specimens. The relation between the proposed factor and friction factor of specimens has been analyzed by regression, and results showed a meaningful correlation between them. It can be inferred that the new presented factor can be used as an acceptable criterion for evaluating the roughness properties of light nonwoven fabrics.

Keywords: Surface roughness, Nonwoven, Machine vision, Image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
428 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates

Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras

Abstract:

Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.

Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
427 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images

Authors: Sara A.Yones, Ahmed S. Moussa

Abstract:

Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.

Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
426 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.

Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793
425 Transformability in Post-Earthquake Houses in Iran: with Special Focus on Lar City

Authors: M. Parva, K. Dola, F. Pour Rahimian

Abstract:

Earthquake is considered as one of the most catastrophic disasters in Iran, in terms of both short-term and long-term hazards. Due to the particular financial and time constraints in Iran, quickly constructed post-earthquake houses (PEHs) do not fulfill the minimum requirements to be considered as comfortable dwellings for people. Consequently, people often transform PEHs after they start to reside. However, lack of understanding about process, motivation, and results of housing transformation leads to construction of some houses not suitable for future transformations, hence resulting in eventually demolished or abandoned PEHs. This study investigated housing transformations in a natural bed of post-earthquake Lar. This paper reports results of the conducted survey for comparing normal condition housing transformation with post-earthquake housing transformation in order to reveal the factors that affect post-earthquake housing transformation in Iran. The findings proposed the use of a combination of ‘Temporary’ and ‘Permanent’ housing reconstruction models in Iran to provide victims with basic but permanent post-disaster dwellings. It is also suggested that needs for future transformation should be predicted and addressed during early stages of design and development. This study contributes to both research and practice regarding post-earthquake housing reconstruction in Iran by proposing new design approaches and guidelines.

Keywords: Housing transformation, Iran, Lar, post-earthquake housing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
424 Video Classification by Partitioned Frequency Spectra of Repeating Movements

Authors: Kahraman Ayyildiz, Stefan Conrad

Abstract:

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
423 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface

Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra

Abstract:

Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.

Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
422 Persian Printed Numerals Classification Using Extended Moment Invariants

Authors: Hamid Reza Boveiri

Abstract:

Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.

Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
421 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
420 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods

Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis

Abstract:

An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.

Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
419 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595