Search results for: hybrid systems and recurrent neural networks.
5178 A Dynamic Hybrid Option Pricing Model by Genetic Algorithm and Black- Scholes Model
Authors: Yi-Chang Chen, Shan-Lin Chang, Chia-Chun Wu
Abstract:
Unlike this study focused extensively on trading behavior of option market, those researches were just taken their attention to model-driven option pricing. For example, Black-Scholes (B-S) model is one of the most famous option pricing models. However, the arguments of B-S model are previously mentioned by some pricing models reviewing. This paper following suggests the importance of the dynamic character for option pricing, which is also the reason why using the genetic algorithm (GA). Because of its natural selection and species evolution, this study proposed a hybrid model, the Genetic-BS model which combining GA and B-S to estimate the price more accurate. As for the final experiments, the result shows that the output estimated price with lower MAE value than the calculated price by either B-S model or its enhanced one, Gram-Charlier garch (G-C garch) model. Finally, this work would conclude that the Genetic-BS pricing model is exactly practical.Keywords: genetic algorithm, Genetic-BS, option pricing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22455177 Hybrid Honeypot System for Network Security
Authors: Kyi Lin Lin Kyaw
Abstract:
Nowadays, we are facing with network threats that cause enormous damage to the Internet community day by day. In this situation, more and more people try to prevent their network security using some traditional mechanisms including firewall, Intrusion Detection System, etc. Among them honeypot is a versatile tool for a security practitioner, of course, they are tools that are meant to be attacked or interacted with to more information about attackers, their motives and tools. In this paper, we will describe usefulness of low-interaction honeypot and high-interaction honeypot and comparison between them. And then we propose hybrid honeypot architecture that combines low and high -interaction honeypot to mitigate the drawback. In this architecture, low-interaction honeypot is used as a traffic filter. Activities like port scanning can be effectively detected by low-interaction honeypot and stop there. Traffic that cannot be handled by low-interaction honeypot is handed over to high-interaction honeypot. In this case, low-interaction honeypot is used as proxy whereas high-interaction honeypot offers the optimal level realism. To prevent the high-interaction honeypot from infections, containment environment (VMware) is used.Keywords: Low-interaction honeypot, High-interactionhoneypot, VMware, Proxy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29535176 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network
Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon
Abstract:
In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are class balancing, data shuffling, and standardization, were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the sequential model and ReLU activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.
Keywords: Spectroscopy, soluble solid content, pineapple, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205175 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology
Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan
Abstract:
Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.
Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24365174 Modeling and Analysis for Effective Capacity of a Cross-Layer Optimized Wireless Networks
Authors: Reham A. El-mayet, Hesham M. El-Badawy, Salwa H. Elramly
Abstract:
New generation mobile communication networks have the ability of supporting triple play. In order that, Orthogonal Frequency Division Multiplexing (OFDM) access techniques have been chosen to enlarge the system ability for high data rates networks. Many of cross-layer modeling and optimization schemes for Quality of Service (QoS) and capacity of downlink multiuser OFDM system were proposed. In this paper, the Maximum Weighted Capacity (MWC) based resource allocation at the Physical (PHY) layer is used. This resource allocation scheme provides a much better QoS than the previous resource allocation schemes, while maintaining the highest or nearly highest capacity and costing similar complexity. In addition, the Delay Satisfaction (DS) scheduling at the Medium Access Control (MAC) layer, which allows more than one connection to be served in each slot is used. This scheduling technique is more efficient than conventional scheduling to investigate both of the number of users as well as the number of subcarriers against system capacity. The system will be optimized for different operational environments: the outdoor deployment scenarios as well as the indoor deployment scenarios are investigated and also for different channel models. In addition, effective capacity approach [1] is used not only for providing QoS for different mobile users, but also to increase the total wireless network's throughput.Keywords: Cross-layer, effective capacity, LTE, OFDM, QoS, resource allocation, wireless networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17965173 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation
Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang
Abstract:
Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19405172 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System
Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao
Abstract:
The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13895171 A Corpus-Based Study on the Styles of Three Translators
Authors: Wang Yunhong
Abstract:
The present paper is preoccupied with the different styles of three translators in their translating a Chinese classical novel Shuihu Zhuan. Based on a parallel corpus, it adopts a target-oriented approach to look into whether and what stylistic differences and shifts the three translations have revealed. The findings show that the three translators demonstrate different styles concerning their word choices and sentence preferences, which implies that identification of recurrent textual patterns may be a basic step for investigating the style of a translator.
Keywords: Corpus, lexical choices, sentence characteristics, style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7095170 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders
Authors: Akim Borbuev, Francisco de León
Abstract:
Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.Keywords: Dc power systems, distribution feeders, distribution networks, energy efficiency, power transfer capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10775169 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms
Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara
Abstract:
Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22185168 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based On WiMAX Networks
Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas
Abstract:
Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non_real time traffic in congested networks by considering channel status.
Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18355167 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15375166 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach
Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi
Abstract:
Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.
Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20985165 Effect of Distributed Generators on the Optimal Operation of Distribution Networks
Authors: J. Olamaei , T. Niknam, M. Nayeripour
Abstract:
This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.
Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16325164 Signalling Cost Analysis of PDE-NEMO
Authors: Kamarularifin Abd Jalil, John Dunlop
Abstract:
A Personal Distributed Environment (PDE) is an example of an IP-based system architecture designed for future mobile communications. In a single PDE, there exist several Subnetworks hosting devices located across the infrastructure, which will inter-work with one another through the coordination of a Device Management Entity (DME). Some of these Sub-networks are fixed and some are mobile. In order to support Mobile Sub-networks mobility in the PDE, the PDE-NEMO protocol was proposed. This paper discussed the signalling cost analysis of PDE-NEMO by use of a detailed simulation model. The paper started with the introduction of the protocol, followed by the experiments and results and then followed by discussions.Keywords: Mobile Network, PDE-NEMO, Signallling Cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13975163 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49905162 A Block Cipher for Resource-Constrained IoT Devices
Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam
Abstract:
In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a layer between the encryption and decryption processes.
Keywords: Internet of Things, IoT, cryptography block cipher, s-box, key management, IoT security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5415161 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19085160 First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks
Authors: Frank Emmert-Streib, Matthias Dehmer
Abstract:
Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.Keywords: Dynamic Bayesian networks, microarray data, structure learning, Markov chain Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15505159 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.
Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4955158 Using Radial Basis Function Neural Networks to Calibrate Water Quality Model
Authors: Lihui Ma, Kunlun Xin, Suiqing Liu
Abstract:
Modern managements of water distribution system (WDS) need water quality models that are able to accurately predict the dynamics of water quality variations within the distribution system environment. Before water quality models can be applied to solve system problems, they should be calibrated. Although former researchers use GA solver to calibrate relative parameters, it is difficult to apply on the large-scale or medium-scale real system for long computational time. In this paper a new method is designed which combines both macro and detailed model to optimize the water quality parameters. This new combinational algorithm uses radial basis function (RBF) metamodeling as a surrogate to be optimized for the purpose of decreasing the times of time-consuming water quality simulation and can realize rapidly the calibration of pipe wall reaction coefficients of chlorine model of large-scaled WDS. After two cases study this method is testified to be more efficient and promising, and deserve to generalize in the future.Keywords: Metamodeling, model calibration, radial basisfunction, water distribution system, water quality model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20215157 Distributed e-Learning System with Client-Server and P2P Hybrid Architecture
Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Abstract:
We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and a function are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In this system, all computers offer the function and exercise by themselves. However, the system that all computers do the same behavior is not realistic. In this paper, as a solution of this issue, we present an e-Learning system that is composed of computers of different participation types. Enabling the computer of different participation types will improve the convenience of the system.Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agen
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23395156 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14195155 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.
Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5845154 Evolutionary Dynamics on Small-World Networks
Authors: Jan Rychtar, Brian Stadler
Abstract:
We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.Keywords: evolutionary dynamics, small-world networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12375153 The Functionality and Usage of CRM Systems
Authors: Michael Torggler
Abstract:
Modern information and communication technologies offer a variety of support options for the efficient handling of customer relationships. CRM systems have been developed, which are designed to support the processes in the areas of marketing, sales and service. Along with technological progress, CRM systems are constantly changing, i.e. the systems are continually enhanced by new functions. However, not all functions are suitable for every company because of different frameworks and business processes. In this context the question arises whether or not CRM systems are widely used in Austrian companies and which business processes are most frequently supported by CRM systems. This paper aims to shed light on the popularity of CRM systems in Austrian companies in general and the use of different functions to support their daily business. First of all, the paper provides a theoretical overview of the structure of modern CRM systems and proposes a categorization of currently available software functionality for collaborative, operational and analytical CRM processes, which provides the theoretical background for the empirical study. Apart from these theoretical considerations, the paper presents the empirical results of a field survey on the use of CRM systems in Austrian companies and analyzes its findings.Keywords: CRM systems, CRM system adoption, CRM system diffusion, CRM functionality, Market study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40495152 RTCoord: A Methodology to Design WSAN Applications
Authors: J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio
Abstract:
Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.Keywords: Sensor networks, real time and embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12985151 Synchronization of Non-Identical Chaotic Systems with Different Orders Based On Vector Norms Approach
Authors: Rihab Gam, Anis Sakly, Faouzi M'sahli
Abstract:
A new strategy of control is formulated for chaos synchronization of non-identical chaotic systems with different orders using the Borne and Gentina practical criterion associated with the Benrejeb canonical arrow form matrix, to drift the stability property of dynamic complex systems. The designed controller ensures that the state variables of controlled chaotic slave systems globally synchronize with the state variables of the master systems, respectively. Numerical simulations are performed to illustrate the efficiency of the proposed method.
Keywords: Synchronization, Non-identical chaotic systems, Different orders, Arrow form matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17995150 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students
Authors: Philippe A. Martin
Abstract:
This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.
Keywords: knowledge sharing, knowledge evaluation, e-learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15085149 Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal
Authors: Karima Siham Aoubid, Mohamed Boulemden
Abstract:
The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.Keywords: Compression, linear prediction analysis, multiresolution analysis, speech signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337