Search results for: Image mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2078

Search results for: Image mining

428 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: Alignment, RNA secondary structure, pairwise, component-based, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
427 Machine Vision for the Inspection of Surgical Tasks: Applications to Robotic Surgery Systems

Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

The use of machine vision to inspect the outcome of surgical tasks is investigated, with the aim of incorporating this approach in robotic surgery systems. Machine vision is a non-contact form of inspection i.e. no part of the vision system is in direct contact with the patient, and is therefore well suited for surgery where sterility is an important consideration,. As a proof-of-concept, three primary surgical tasks for a common neurosurgical procedure were inspected using machine vision. Experiments were performed on cadaveric pig heads to simulate the two possible outcomes i.e. satisfactory or unsatisfactory, for tasks involved in making a burr hole, namely incision, retraction, and drilling. We identify low level image features to distinguish the two outcomes, as well as report on results that validate our proposed approach. The potential of using machine vision in a surgical environment, and the challenges that must be addressed, are identified and discussed.

Keywords: Visual inspection, machine vision, robotic surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
426 Multi-threshold Approach for License Plate Recognition System

Authors: Siti Norul Huda Sheikh Abdullah, Farshid Pirahan Siah, Nor Hanisah Haji Zainal Abidin, Shahnorbanun Sahran

Abstract:

The objective of this paper is to propose an adaptive multi threshold for image segmentation precisely in object detection. Due to the different types of license plates being used, the requirement of an automatic LPR is rather different for each country. The proposed technique is applied on Malaysian LPR application. It is based on Multi Layer Perceptron trained by back propagation. The proposed adaptive threshold is introduced to find the optimum threshold values. The technique relies on the peak value from the graph of the number object versus specific range of threshold values. The proposed approach has improved the overall performance compared to current optimal threshold techniques. Further improvement on this method is in progress to accommodate real time system specification.

Keywords: Multi-threshold approach, license plate recognition system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
425 MJPEG Real-Time Transmission in Industrial Environments Using a CBR Channel

Authors: J. Silvestre, L. Almeida, R. Marau, P. Pedreiras

Abstract:

Currently, there are many local area industrial networks that can give guaranteed bandwidth to synchronous traffic, particularly providing CBR channels (Constant Bit Rate), which allow improved bandwidth management. Some of such networks operate over Ethernet, delivering channels with enough capacity, specially with compressors, to integrate multimedia traffic in industrial monitoring and image processing applications with many sources. In these industrial environments where a low latency is an essential requirement, JPEG is an adequate compressing technique but it generates VBR traffic (Variable Bit Rate). Transmitting VBR traffic in CBR channels is inefficient and current solutions to this problem significantly increase the latency or further degrade the quality. In this paper an R(q) model is used which allows on-line calculation of the JPEG quantification factor. We obtained increased quality, a lower requirement for the CBR channel with reduced number of discarded frames along with better use of the channel bandwidth.

Keywords: Industrial Networks, Multimedia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
424 Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac O. Asante, Yushi Jiang, Hailin Tao

Abstract:

Livestreaming marketing, the new electronic commerce element, has become an optional marketing channel following the COVID-19 pandemic, and many sellers are leveraging the features presented by livestreaming to increase sales. This study was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during livestreaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study presents a way of measuring interactions in livestreaming commerce and proposes a way to manually gather data on consumer behaviors in livestreaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: Livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149
423 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism

Authors: D. Sumathi, P. Poongodi

Abstract:

Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.

Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
422 The Announcer Trainee Satisfaction by National Broadcasting and Telecommunications Commission of Thailand

Authors: Nareenad Panbun

Abstract:

The objective is to study the knowledge utilization from the participants of the announcer training program by National Broadcasting and Telecommunications Commission (NBTC). This study is a quantitative research based on surveys and self-answering questionnaires. The population of this study is 100 participants randomly chosen by non-probability sampling method. The results have shown that most of the participants were satisfied with the topics of general knowledge about the broadcasting and television business for 37 people representing 37%, followed by the topics of broadcasting techniques. The legal issues, consumer rights, television business ethics, and credibility of the media are, in addition to the media's role and responsibilities in society, the use of language for successful communication. Therefore, the communication language skills are the most important for all of the trainees and will also build up the image of the broadcasting center.

Keywords: Announcer training program, participant, requirements announced, theory of utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
421 Investigation of Some Methodologies in Providing Erosion Maps of Surface, Rill and Gully and Erosion Features

Authors: A. Mohammadi Torkashvand, N. Haghighat

Abstract:

Some methodologies were compared in providing erosion maps of surface, rill and gully and erosion features, in research which took place in the Varamin sub-basin, north-east Tehran, Iran. A photomorphic unit map was produced from processed satellite images, and four other maps were prepared by the integration of different data layers, including slope, plant cover, geology, land use, rocks erodibility and land units. Comparison of ground truth maps of erosion types and working unit maps indicated that the integration of land use, land units and rocks erodibility layers with satellite image photomorphic units maps provide the best methods in producing erosion types maps.

Keywords: Erosion Features, Geographic Information System, Remote Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
420 A Stereo Vision System for Top View Book Scanners

Authors: Erik Lilienblum, Robert Niese, Bernd Michaelis

Abstract:

This paper proposes a novel stereo vision technique for top view book scanners which provide us with dense 3d point clouds of page surfaces. This is a precondition to dewarp bound volumes independent of 2d information on the page. Our method is based on algorithms, which normally require the projection of pattern sequences with structured light. We use image sequences of the moving stripe lighting of the top view scanner instead of an additional light projection. Thus the stereo vision setup is simplified without losing measurement accuracy. Furthermore we improve a surface model dewarping method through introducing a difference vector based on real measurements. Although our proposed method is hardly expensive neither in calculation time nor in hardware requirements we present good dewarping results even for difficult examples.

Keywords: stereo vision, 3d surface reconstruction, dewarpingdocuments, book scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
419 Decision Making about the Environmental Management Implementation – Incentives and Expectations

Authors: Eva Štěpánková

Abstract:

Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.

Keywords: Environmental management, environmental management systems, ISO 14001.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
418 Matching Facial Images using Age Related Morphing Changes

Authors: Udeni Jayasinghe, Anuja Dharmaratne

Abstract:

Each year many people are reported missing in most of the countries in the world owing to various reasons. Arrangements have to be made to find these people after some time. So the investigating agencies are compelled to make out these people by using manpower. But in many cases, the investigations carried out to find out an absconding for a long time may not be successful. At a time like that it may be difficult to identify these people by examining their old photographs, because their facial appearance might have changed mainly due to the natural aging process. On some occasions in forensic medicine if a dead body is found, investigations should be held to make sure that this corpse belongs to the same person disappeared some time ago. With the passage of time the face of the person might have changed and there should be a mechanism to reveal the person-s identity. In order to make this process easy, we must guess and decide as to how he will look like by now. To address this problem this paper presents a way of synthesizing a facial image with the aging effects.

Keywords: Cranio-facial growth model, eigenfaces, eigenvectors, Face Anthropometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
417 EPR Hiding in Medical Images for Telemedicine

Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar

Abstract:

Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.

Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
416 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
415 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
414 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
413 Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks

Authors: Tin Hninn Hninn Maung

Abstract:

This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.

Keywords: Hand gesture recognition, Orientation Histogram, Myanmar Alphabet Language, Perceptronnetwork, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4697
412 Person Re-Identification Using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: Camera network, convolutional neural network topology, person tracking, person re-identification, Siamese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81
411 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
410 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
409 A New Method for Contour Approximation Using Basic Ramer Idea

Authors: Ali Abdrhman Ukasha

Abstract:

This paper presented two new efficient algorithms for contour approximation. The proposed algorithm is compared with Ramer (good quality), Triangle (faster) and Trapezoid (fastest) in this work; which are briefly described. Cartesian co-ordinates of an input contour are processed in such a manner that finally contours is presented by a set of selected vertices of the edge of the contour. In the paper the main idea of the analyzed procedures for contour compression is performed. For comparison, the mean square error and signal-to-noise ratio criterions are used. Computational time of analyzed methods is estimated depending on a number of numerical operations. Experimental results are obtained both in terms of image quality, compression ratios, and speed. The main advantages of the analyzed algorithm is small numbers of the arithmetic operations compared to the existing algorithms.

Keywords: Polygonal approximation, Ramer, Triangle and Trapezoid methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
408 Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

Authors: Hirofumi Taki, Takuya Sakamoto, Makoto Yamakawa, Tsuyoshi Shiina, Toru Sato

Abstract:

For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.

Keywords: Ultrasonography, Calcification, Decorrelation, Forward scattered wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
407 Detection and Analysis of Deficiencies in Groundnut Plant using Geometric Moments

Authors: Sumeet S. Nisale, Chandan J. Bharambe, Vidya N.More

Abstract:

We propose our genuine research of geometric moments which detects the mineral inadequacy in the frail groundnut plant. This plant is prone to many deficiencies as a result of the variance in the soil nutrients. By analyzing the leaves of the plant, we detect the visual symptoms that are not recognizable to the naked eyes. We have collected about 160 samples of leaves from the nearby fields. The images have been taken by keeping every leaf into a black box to avoid the external interference. For the first time, it has been possible to provide the farmer with the stages of deficiencies. This paper has applied the algorithms successfully to many other plants like Lady-s finger, Green Bean, Lablab Bean, Chilli and Tomato. But we submit the results of the groundnut predominantly. The accuracy of our algorithm and method is almost 93%. This will again pioneer a kind of green revolution in the field of agriculture and will be a boon to that field.

Keywords: Component image, geometric moments, average intensity, average affected area, black box

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
406 Casting Users- Perspectives on Foundries as Suppliers

Authors: T. Saarelainen, O. Piha, P. Makkonen, J. Orkas

Abstract:

Global competition is tightening and companies have to think how to remain competitive. The main aim of this paper is to discuss how Finnish foundries will remain competitive. To fulfil the aim, we conducted interviews in nine companies using castings and analysed buyer–supplier relationships, current competitive advantages of Finnish foundries and customer perspectives on how Finnish foundries remain competitive. We found that the customerfoundry relationship is still closer to traditional subcontracting than partnering and general image of foundries is negative. Current competitive advantages of Finnish foundries include designing cooperation, proximity and flexibility. Casting users state that Finnish foundries should sell their know-how and services instead of their capacity, concentrate on prototype, single and short series castings and supply ready-to-install cast components directly to customers- assembly lines.

Keywords: Buyer-supplier relationship, casting, competitiveadvantage, customer prespective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
405 Towards a Sustainable Regeneration: The Case Study of the San Mateo Neighborhood, in Jerez de la Frontera (Andalusia)

Authors: J.L. Higuera Trujillo, F.J. Montero Fernández

Abstract:

Based on different experiences in the historic centers of Spain, we propose an global strategy for the regeneration of the pre-tertiary fabrics and its application to the specific case of San Mateo neighborhood, in Jerez de la Frontera (Andalusia), through a diagnosis that focus particularly on the punishments the last-decade economic situation (building boom and crisis) and shows the tragic transition from economic center to an imminent disappearance with an image similar to the ruins of war, due to the loss of their traditional roles. From it we will learn their historically-tested mechanisms of environment adaptation, which distill the vernacular architecture essence and that we will apply to our strategy of action based on a dotacional-and-free-space rhizome which rediscovers its hidden character. The architectural fact will be crystallized in one of the example-pieces proposed: The Artistic Revitalization Center.

Keywords: Jerez de la Frontera, pre-tertiary fabrics, sustainable architecture, urban regeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
404 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman, Jordan

Authors: Asil Y. Zureigat, Ayat A. Oudat

Abstract:

Analyzing the old and bringing in the new is an ever-ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman, the paper seeks to make the exception the rule, by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Keywords: Architectural city identity, cladding materials, façade architecture, image of the city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
403 Face Recognition Using Morphological Shared-weight Neural Networks

Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani

Abstract:

We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.

Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
402 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
401 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms

Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho

Abstract:

Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.

Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
400 Development of a Technology Assessment Model by Patents and Customers' Review Data

Authors: Kisik Song, Sungjoo Lee

Abstract:

Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.

Keywords: Technology assessment, patents, citation information, opinion mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
399 Approaches to Promote Healthy Recreation Activities for Elderly Tourists at Bang Nam Phueng Floating Market, Prapradeang District, Samutprakarn Province

Authors: Sasitorn Chetanont

Abstract:

The objectives of this study are to find out the approaches to promote healthy recreation activities for elderly tourists and develop Bang Nam Phueng Floating Market to be a health tourism attraction. The research methodology was to analyze internal and external situations according to MP-MF and the MCSTEPS principles. As for the results of this study the researcher found that the healthy recreational activities for elderly tourists could be divided in 7 groups; travelling Bang Nam Phueng Floating Market activity, homestay relaxation, arts center platform activity, healthy massage activity, paying homage to a Buddha image activity, herbal joss-stick home activity, making local desserts and food activity.

Keywords: Elderly tourists, recreational activities, Bang Nam Phueng Floating Market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051