Search results for: edge based enhancement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11856

Search results for: edge based enhancement

10236 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Authors: Sunita Jahirabadkar, Parag Kulkarni

Abstract:

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
10235 Semantically Enriched Web Usage Mining for Personalization

Authors: Suresh Shirgave, Prakash Kulkarni, José Borges

Abstract:

The continuous growth in the size of the World Wide Web has resulted in intricate Web sites, demanding enhanced user skills and more sophisticated tools to help the Web user to find the desired information. In order to make Web more user friendly, it is necessary to provide personalized services and recommendations to the Web user. For discovering interesting and frequent navigation patterns from Web server logs many Web usage mining techniques have been applied. The recommendation accuracy of usage based techniques can be improved by integrating Web site content and site structure in the personalization process.

Herein, we propose semantically enriched Web Usage Mining method for Personalization (SWUMP), an extension to solely usage based technique. This approach is a combination of the fields of Web Usage Mining and Semantic Web. In the proposed method, we envisage enriching the undirected graph derived from usage data with rich semantic information extracted from the Web pages and the Web site structure. The experimental results show that the SWUMP generates accurate recommendations and is able to achieve 10-20% better accuracy than the solely usage based model. The SWUMP addresses the new item problem inherent to solely usage based techniques.

Keywords: Prediction, Recommendation, Semantic Web Usage Mining, Web Usage Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
10234 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

Authors: Z.Farhadpour, Mohammad.R.Meybodi

Abstract:

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Keywords: Learning automata, routing, algorithm, sparse graph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
10233 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity

Authors: M. Movahedi Rad

Abstract:

In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free-head and fixed-head long pile when plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.

Keywords: Reliability, laterally loaded pile, residual strain energy, probability, limit analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
10232 OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

Authors: A. B.Bhattacharyya, B. S.K.Goswami

Abstract:

This paper presents Genetic Algorithm (GA) based approach for the allocation of FACTS (Flexible AC Transmission System) devices for the improvement of Power transfer capacity in an interconnected Power System. The GA based approach is applied on IEEE 30 BUS System. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is noticed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. Genetic Algorithm is then applied to find the amount of magnitudes of the FACTS devices. This approach of GA based placement of FACTS devices is tremendous beneficial both in terms of performance and economy is clearly observed from the result obtained.

Keywords: FACTS Devices, Line Power Flow, OptimalLocation of FACTS Devices, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4135
10231 Impact of Herbicides on Soil Biology in Rapeseed

Authors: M. Eickermann, M. K. Class, J. Junk

Abstract:

Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.

Keywords: Cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
10230 Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

Keywords: Higher order systems, model order formulation, modified particle swarm optimization, PID controller, pole-zero cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5028
10229 A Keyword-Based Filtering Technique of Document-Centric XML using NFA Representation

Authors: Changwoo Byun, Kyounghan Lee, Seog Park

Abstract:

XML is becoming a de facto standard for online data exchange. Existing XML filtering techniques based on a publish/subscribe model are focused on the highly structured data marked up with XML tags. These techniques are efficient in filtering the documents of data-centric XML but are not effective in filtering the element contents of the document-centric XML. In this paper, we propose an extended XPath specification which includes a special matching character '%' used in the LIKE operation of SQL in order to solve the difficulty of writing some queries to adequately filter element contents using the previous XPath specification. We also present a novel technique for filtering a collection of document-centric XMLs, called Pfilter, which is able to exploit the extended XPath specification. We show several performance studies, efficiency and scalability using the multi-query processing time (MQPT).

Keywords: XML Data Stream, Document-centric XML, Filtering Technique, Value-based Predicates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
10228 Low Complexity, High Performance LDPC Codes Based on Defected Fullerene Graphs

Authors: Ashish Goswami, Rakesh Sharma

Abstract:

In this paper, LDPC Codes based on defected fullerene graphs have been generated. And it is found that the codes generated are fast in encoding and better in terms of error performance on AWGN Channel.

Keywords: LDPC Codes, Fullerene Graphs, Defected Fullerene Graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
10227 An Augmented-Reality Interactive Card Game for Teaching Elementary School Students

Authors: YuLung Wu, YuTien Wu, ShuMey Yu

Abstract:

Game-based learning can enhance the learning motivation of students and provide a means for them to learn through playing games. This study used augmented reality technology to develop an interactive card game as a game-based teaching aid for delivering elementary school science course content with the aim of enhancing student learning processes and outcomes. Through playing the proposed card game, students can familiarize themselves with appearance, features, and foraging behaviors of insects. The system records the actions of students, enabling teachers to determine their students’ learning progress. In this study, 37 students participated in an assessment experiment and provided feedback through questionnaires. Their responses indicated that they were significantly more motivated to learn after playing the game, and their feedback was mostly positive.

Keywords: Game-based learning, learning motivation, teaching aid, augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
10226 Continuum-Based Modelling Approaches for Cell Mechanics

Authors: Yogesh D. Bansod, Jiri Bursa

Abstract:

The quantitative study of cell mechanics is of paramount interest, since it regulates the behaviour of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.

Keywords: Cell mechanics, computational models, continuum approach, mechanical models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
10225 Proton and Neutron Magnetic Moments Based On Bag Models

Authors: G. R. Boroun, R. Harami

Abstract:

Using form factors of the proton and the neutron for different of Q2, bag radius of the proton and the neutron can be obtained based on bag models. Then using static bag radius, magnetic moments of the proton and the neutron can be obtained and compared with other results.

Keywords: MIT bag model, proton and neutron, magnetic moment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
10224 Comparative Study of Filter Characteristics as Statistical Vocal Correlates of Clinical Psychiatric State in Human

Authors: Thaweesak Yingthawornsuk, Chusak Thanawattano

Abstract:

Acoustical properties of speech have been shown to be related to mental states of speaker with symptoms: depression and remission. This paper describes way to address the issue of distinguishing depressed patients from remitted subjects based on measureable acoustics change of their spoken sound. The vocal-tract related frequency characteristics of speech samples from female remitted and depressed patients were analyzed via speech processing techniques and consequently, evaluated statistically by cross-validation with Support Vector Machine. Our results comparatively show the classifier's performance with effectively correct separation of 93% determined from testing with the subjectbased feature model and 88% from the frame-based model based on the same speech samples collected from hospital visiting interview sessions between patients and psychiatrists.

Keywords: Depression, SVM, Vocal Extract, Vocal Tract

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
10223 Extended “2D-RIB“ for Impression-Based Satisfactory Retrieval and its Evaluation

Authors: T. Takayama, S. Kikuchi, Y. Hashimoto, T. Ikeda, Y. Murata

Abstract:

Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB' in the previous work. The aim of the present paper is to improve his/her satisfaction level to the retrieval result in the 2D-RIB. Our method is to extend the 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. Another extension is three types of customization menus. The result of evaluation using a pilot system is as follows. Both of these two measures 'melody goodness' and -general acceptance- can contribute to the improvement. Moreover, it is effective if we introduce the customization menu which enables a retrieval person to reduce the strictness level of retrieval condition in an impression pair based on his/her need.

Keywords: Multimedia database, impression-based retrieval, interface, satisfaction level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
10222 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability

Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil

Abstract:

Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.

Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
10221 Distributional Semantics Approach to Thai Word Sense Disambiguation

Authors: Sunee Pongpinigpinyo, Wanchai Rivepiboon

Abstract:

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy that employs an unsupervised learning method for disambiguation. We report our investigation of Latent Semantic Indexing (LSI), an information retrieval technique and unsupervised learning, to the task of Thai noun and verbal word sense disambiguation. The Latent Semantic Indexing has been shown to be efficient and effective for Information Retrieval. For the purposes of this research, we report experiments on two Thai polysemous words, namely  /hua4/ and /kep1/ that are used as a representative of Thai nouns and verbs respectively. The results of these experiments demonstrate the effectiveness and indicate the potential of applying vector-based distributional information measures to semantic disambiguation.

Keywords: Distributional semantics, Latent Semantic Indexing, natural language processing, Polysemous words, unsupervisedlearning, Word Sense Disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
10220 Bayesian Network Based Intelligent Pediatric System

Authors: Jagmohan Mago, Parvinder S. Sandhu, Neeru Chawla

Abstract:

In this paper, a Bayesian Network (BN) based system is presented for providing clinical decision support to healthcare practitioners in rural or remote areas of India for young infants or children up to the age of 5 years. The government is unable to appoint child specialists in rural areas because of inadequate number of available pediatricians. It leads to a high Infant Mortality Rate (IMR). In such a scenario, Intelligent Pediatric System provides a realistic solution. The prototype of an intelligent system has been developed that involves a knowledge component called an Intelligent Pediatric Assistant (IPA); and User Agents (UA) along with their Graphical User Interfaces (GUI). The GUI of UA provides the interface to the healthcare practitioner for submitting sign-symptoms and displaying the expert opinion as suggested by IPA. Depending upon the observations, the IPA decides the diagnosis and the treatment plan. The UA and IPA form client-server architecture for knowledge sharing.

Keywords: Network, Based Intelligent, Pediatric System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
10219 Analysis and Simulation of Automotive Interleaved Buck Converter

Authors: Mohamed. A. Shrud, Ahmad H. Kharaz, Ahmed. S. Ashur, Ahmed Faris, Mustafa Benamar

Abstract:

This paper will focus on modeling, analysis and simulation of a 42V/14V dc/dc converter based architecture. This architecture is considered to be technically a viable solution for automotive dual-voltage power system for passenger car in the near further. An interleaved dc/dc converter system is chosen for the automotive converter topology due to its advantages regarding filter reduction, dynamic response, and power management. Presented herein, is a model based on one kilowatt interleaved six-phase buck converter designed to operate in a Discontinuous Conduction Mode (DCM). The control strategy of the converter is based on a voltagemode- controlled Pulse Width Modulation (PWM) with a Proportional-Integral-Derivative (PID). The effectiveness of the interleaved step-down converter is verified through simulation results using control-oriented simulator, MatLab/Simulink.

Keywords: Automotive, dc-to-dc power modules, design, interleaved, Matlab\Simulink and PID control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4230
10218 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: Impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
10217 Modified Scaling-Free CORDIC Based Pipelined Parallel MDC FFT and IFFT Architecture for Radix 2^2 Algorithm

Authors: C. Paramasivam, K. B. Jayanthi

Abstract:

An innovative approach to develop modified scaling free CORDIC based two parallel pipelined Multipath Delay Commutator (MDC) FFT and IFFT architectures for radix 22 FFT algorithm is presented. Multipliers and adders are the most important data paths in FFT and IFFT architectures. Multipliers occupy high area and consume more power. In order to optimize the area and power overhead, modified scaling-free CORDIC based complex multiplier is utilized in the proposed design. In general twiddle factor values are stored in RAM block. In the proposed work, modified scaling-free CORDIC based twiddle factor generator unit is used to generate the twiddle factor and efficient switching units are used. In addition to this, four point FFT operations are performed without complex multiplication which helps to reduce area and power in the last two stages of the pipelined architectures. The design proposed in this paper is based on multipath delay commutator method. The proposed design can be extended to any radix 2n based FFT/IFFT algorithm to improve the throughput. The work is synthesized using Synopsys design Compiler using TSMC 90-nm library. The proposed method proves to be better compared to the reference design in terms of area, throughput and power consumption. The comparative analysis of the proposed design with Xilinx FPGA platform is also discussed in the paper.

Keywords: Coordinate Rotational Digital Computer(CORDIC), Complex multiplier, Fast Fourier transform (FFT), Inverse fast Fourier transform (IFFT), Multipath delay Commutator (MDC), modified scaling free CORDIC, complex multiplier, pipelining, parallel processing, radix-2^2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
10216 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: Clustering, edges, feature points, landmark selection, X-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
10215 Design of an M-Channel Cosine Modulated Filter Bank by New Cosh Window Based FIR Filters

Authors: Jyotsna Ogale, Alok Jain

Abstract:

In this paper newly reported Cosh window function is used in the design of prototype filter for M-channel Near Perfect Reconstruction (NPR) Cosine Modulated Filter Bank (CMFB). Local search optimization algorithm is used for minimization of distortion parameters by optimizing the filter coefficients of prototype filter. Design examples are presented and comparison has been made with Kaiser window based filterbank design of recently reported work. The result shows that the proposed design approach provides lower distortion parameters and improved far-end suppression than the Kaiser window based design of recent reported work.

Keywords: Window function, Cosine modulated filterbank, Local search optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
10214 Skills Development: The Active Learning Model of a French Computer Science Institute

Authors: N. Paparisteidi, D. Rodamitou

Abstract:

This article focuses on the skills development and path planning of students studying computer science at EPITECH: French private institute of higher education. We examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.

Keywords: Active learning, blended learning, higher education, skills development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222
10213 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
10212 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: Attention, fire detection, smoke detection, spatiotemporal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
10211 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim

Abstract:

In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
10210 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
10209 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: Ferric sludge reuse, ferric iron reductant, water treatment, organic pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
10208 Challenges and Opportunities of Cloud-Based E-Learning Systems

Authors: Kashif Laeeq, Zubair A. Shaikh

Abstract:

The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.

Keywords: Cloud-based e-learning, e-learning, cloud computing application, smart learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
10207 Virtual Training, Human-Computer and Software Interactions, and Social-Based Embodiness

Authors: Philippe Fauquet-Alekhine

Abstract:

For professions of high risk industries, simulation training has always been thought in terms of high degree of fidelity regarding the real operational situation. Due to the recent progress, this way of training is changing, modifying the human-computer and software interactions: the interactions between trainees during simulation training session tend to become virtual, transforming the social-based embodiness (the way subjects integrate social skills for interpersonal relationship with co-workers). On the basis of the analysis of eight different profession trainings, a categorization of interactions has help to produce an analytical tool, the social interactions table. This tool may be very valuable to point out the changes of social interactions when the training sessions are skipping from a high fidelity simulator to a virtual simulator. In this case, it helps the designers of professional training to analyze and to assess the consequences of the potential lack the social-based embodiness.

Keywords: Interface, interaction, simulator, virtual training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828