Search results for: design of fuzzy time control DEV system.
15548 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation
Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová
Abstract:
Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161715547 Modelling of a Multi-Track Railway Level Crossing System Using Timed Petri Net
Authors: Prasun Hajra, Ranjan Dasgupta
Abstract:
Petri Net being one of the most useful graphical tools for modelling complex asynchronous systems, we have used Petri Net to model multi-track railway level crossing system. The roadway has been augmented with four half-size barriers. For better control, a three stage control mechanism has been introduced to ensure that no road-vehicle is trapped on the level crossing. Timed Petri Net is used to include the temporal nature of the signalling system. Safeness analysis has also been included in the discussion section.
Keywords: Modelling, Timed Petri Net, Railway Level Crossing, Safeness Condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212215546 Parametric Design as an Approach to Respond to Complexity
Authors: Sepideh Jabbari Behnam, Zahrasadat Saide Zarabadi
Abstract:
A city is an intertwined texture from the relationship of different components in a whole which is united in a one, so designing the whole complex and its planning is not an easy matter. By considering that a city is a complex system with infinite components and communications, providing flexible layouts that can respond to the unpredictable character of the city, which is a result of its complexity, is inevitable. Parametric design approach as a new approach can produce flexible and transformative layouts in any stage of design. This study aimed to introduce parametric design as a modern approach to respond to complex urban issues by using descriptive and analytical methods. This paper firstly introduces complex systems and then giving a brief characteristic of complex systems. The flexible design and layout flexibility is another matter in response and simulation of complex urban systems that should be considered in design, which is discussed in this study. In this regard, after describing the nature of the parametric approach as a flexible approach, as well as a tool and appropriate way to respond to features such as limited predictability, reciprocating nature, complex communications, and being sensitive to initial conditions and hierarchy, this paper introduces parametric design.
Keywords: Complexity theory, complex system, flexibility, parametric design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132515545 Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)
Authors: A. Shamsi, N. Choupani
Abstract:
Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.Keywords: Semi-active suspension system, Skyhook, Vibration isolation, 4DOF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273315544 IntelliCane: A Cane System for Individuals with Lower-Limb Mobility and Functional Impairments
Authors: Adrian Bostan, Nicolae Tapus, Adriana Tapus
Abstract:
The purpose of this research paper is to study and develop a system that is able to help identify problems and improve human rehabilitation after traumatic injuries. Traumatic injuries in human’s lower limbs can occur over a life time and can have serious side effects if they are not treated correctly. In this paper, we developed an intelligent cane (IntelliCane) so as to help individuals in their rehabilitation process and provide feedback to the users. The first stage of the paper involves an analysis of the existing systems on the market and what can be improved. The second stage presents the design of the system. The third part, which is still under development is the validation of the system in real world setups with people in need. This paper presents mainly stages one and two.Keywords: IntelliCane, 3D printing, microprocessor, weight measurement, rehabilitation tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94115543 2-Dimensional Finger Gesture Based Mobile Robot Control Using Touch Screen
Authors: O. Ejale, N.B. Siddique, R. Seals
Abstract:
The purpose of this study was to present a reliable mean for human-computer interfacing based on finger gestures made in two dimensions, which could be interpreted and adequately used in controlling a remote robot's movement. The gestures were captured and interpreted using an algorithm based on trigonometric functions, in calculating the angular displacement from one point of touch to another as the user-s finger moved within a time interval; thereby allowing for pattern spotting of the captured gesture. In this paper the design and implementation of such a gesture based user interface was presented, utilizing the aforementioned algorithm. These techniques were then used to control a remote mobile robot's movement. A resistive touch screen was selected as the gesture sensor, then utilizing a programmed microcontroller to interpret them respectively.
Keywords: 2-Dimensional interface, finger gesture, mobile robot control, touch screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193215542 Optimum Control Strategy of Three-Phase Shunt Active Filter System
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu, Vlad Suru
Abstract:
The aim of this paper is to identify an optimum control strategy of three-phase shunt active filters to minimize the total harmonic distortion factor of the supply current. A classical PIPI cascade control solution of the output current of the active filterand the voltage across the DC capacitor based on Modulus–Optimum criterion is taken into consideration. The control system operation has been simulated using Matlab-Simulink environment and the results agree with the theoretical expectation. It is shown that there is an optimum value of the DC-bus voltage which minimizes the supply current harmonic distortion factor. It corresponds to the equality of the apparent power at the output of the active filter and the apparent power across the capacitor. Finally, predicted results are verified experimentally on a MaxSine active power filter.Keywords: Active filtering, Controller tuning, Modulus Optimum criterion, Optimum control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217415541 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter
Authors: K. G. Firouzjah, A. Sheikholeslami
Abstract:
The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.
Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183815540 Proposal of Design Method in the Semi-Acausal System Model
Authors: Junji Kaneko, Shigeyuki Haruyama, Ken Kaminishi, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physic fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.
Keywords: System Model, Physical Models, Empirical Models, Conservation Law, Differential Algebraic Equation, Object-Oriented.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223515539 Contribution to the Study and Optimal Exploitation of a Solar Power System for a Semi-Arid Zone (Case Study: Ferkene, Algeria)
Authors: D. Dib, W. Guebabi, M. B. Guesmi
Abstract:
The objective of this paper is a contribution to a study of power supply by solar energy system called a common Ferkène north of Algerian desert in the semi-arid area. The optimal exploitation of the system, goes through stages of study and essential design, the choice of the model of the photovoltaic panel, the study of behavior with all the parameters involved in simulation before fixing the trajectory tracking the maximum point the power to extract (MPPT), form the essential platform to shape the design of the solar system set up to supply the town Ferkène without considering the grid. The identification of the common Ferkène by the collection of geographical, meteorological, demographic and electrical provides a basis uniform and important data. The results reflect a valid fictive model for any attempt to study and design a solar system to supply an arid or semi-arid zone by electrical energy from photovoltaic panels.
Keywords: Solar power, photovoltaic panel, Boost converter, supply, design, electric power, Ferkène, Algeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175915538 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame
Authors: Seyed Saeid Tabaee, Omid Bahar
Abstract:
Nowadays, energy dissipation devices are commonly used in structures. High rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements, specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely make analysis and design process complicated. This effect may be generally represented by Equivalent Viscous Damping (EVD). The equivalent viscous damping might be obtained from the expected hysteretic behavior regarding to the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel Moment Resisting Frame (MRF), which its performance is enhanced by a Buckling Restrained Brace (BRB) system has been evaluated. Having foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural system frequency. Two MRF structures, one equipped with BRB and the other without BRB are simultaneously studied. Extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.Keywords: Buckling restrained brace, Direct displacement based design, Dual systems, Hysteretic damping, Moment resisting frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248015537 Concept of Automation in Management of Electric Power Systems
Authors: Richard Joseph, Nerey Mvungi
Abstract:
An electric power system includes a generating, a transmission, a distribution, and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.
Keywords: Automation, Distribution subsystem, Generating subsystem, PSS/E, TANESCO, Transmission subsystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361915536 Optimal Controllers with Actuator Saturation for Nonlinear Structures
Authors: M. Mohebbi, K. Shakeri
Abstract:
Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161115535 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency: A Case of Nasarawa State Polytechnic, Lafia
Authors: Ibrahim Dauda Adagye
Abstract:
Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper therefore assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with specific focus on the Nasarawa State Polytechnic, Lafia. The study is survey, hence a simple closed ended questionnaire was developed and administered to a sample of twenty seven (27) member staff from the Bursary and the Internal audit unit of the Nasarawa State Polytechnic, Lafia so as to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analysed using a simple percentage and chi square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, it therefore means that the right staff be assigned the right job and regular checking of the subordinates by their superiors be ensued.
Keywords: Bursary unit, efficiency, Internal control, tertiary educational institutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390115534 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems
Authors: Jalil Boudjadar
Abstract:
Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.Keywords: Time-critical systems, multicore systems, schedulability analysis, performance, memory interference, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47615533 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System
Authors: Ahmed Bensenouci
Abstract:
This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206515532 Design and Implementation of a Neural Network for Real-Time Object Tracking
Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan
Abstract:
Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.
Keywords: Image processing, machine vision, neural networks, real-time object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351915531 Kinetic Energy Recovery System Using Spring
Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe
Abstract:
New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion.
The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.
Keywords: Electric control unit, Energy, Mechanical KERS, Planetary Gear system, Power, Smart braking, Spiral Spring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879615530 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195115529 Effect of Atmospheric Turbulence on AcquisitionTime of Ground to Deep Space Optical Communication System
Authors: Hemani Kaushal, V.K.Jain, Subrat Kar
Abstract:
The performance of ground to deep space optical communication systems is degraded by distortion of the beam as it propagates through the turbulent atmosphere. Turbulence causes fluctuations in the intensity of the received signal which ultimately affects the acquisition time required to acquire and locate the spaceborne target using narrow laser beam. In this paper, performance of free-space optical (FSO) communication system in atmospheric turbulence has been analyzed in terms of acquisition time for coherent and non-coherent modulation schemes. Numerical results presented in graphical and tabular forms show that the acquisition time increases with the increase in turbulence level. This is true for both schemes. The BPSK has lowest acquisition time among all schemes. In non-coherent schemes, M-PPM performs better than the other schemes. With the increase in M, acquisition time becomes lower, but at the cost of increase in system complexity.Keywords: Atmospheric Turbulence, Acquisition Time, BinaryPhase Shift Keying (BPSK), Free-Space Optical (FSO)Communication System, M-ary Pulse Position Modulation (M-PPM), Coherent/Non-coherent Modulation Schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178915528 Design a Low Voltage- Low Offset Class AB Op-Amp
Authors: B.Gholami, S.Gholami, A.Forouzantabar, Sh.Bazyari
Abstract:
A new design approach for three-stage operational amplifiers (op-amps) is proposed. It allows to actually implement a symmetrical push-pull class-AB amplifier output stage for wellestablished three-stage amplifiers using a feedforward transconductance stage. Compared with the conventional design practice, the proposed approach leads to a significant improvement of the symmetry between the positive and the negative op-amp step response, resulting in similar values of the positive/negative settling time. The new approach proves to be very useful in order to fully exploit the potentiality allowed by the op-amp in terms of speed performances. Design examples in a commercial 0.35-μm CMOS prove the effectiveness of theproposed strategy.Keywords: Low-voltage op amp, design , optimum design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358415527 Mining and Visual Management of XML-Based Image Collections
Authors: Khalil Shihab, Nida Al-Chalabi
Abstract:
This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179615526 Application of Fuzzy Logic Approach for an Aircraft Model with and without Winglet
Authors: Altab Hossain, Ataur Rahman, Jakir Hossen, A.K.M. P. Iqbal, SK. Hasan
Abstract:
The measurement of aerodynamic forces and moments acting on an aircraft model is important for the development of wind tunnel measurement technology to predict the performance of the full scale vehicle. The potentials of an aircraft model with and without winglet and aerodynamic characteristics with NACA wing No. 65-3- 218 have been studied using subsonic wind tunnel of 1 m × 1 m rectangular test section and 2.5 m long of Aerodynamics Laboratory Faculty of Engineering (University Putra Malaysia). Focusing on analyzing the aerodynamic characteristics of the aircraft model, two main issues are studied in this paper. First, a six component wind tunnel external balance is used for measuring lift, drag and pitching moment. Secondly, Tests are conducted on the aircraft model with and without winglet of two configurations at Reynolds numbers 1.7×105, 2.1×105, and 2.5×105 for different angle of attacks. Fuzzy logic approach is found as efficient for the representation, manipulation and utilization of aerodynamic characteristics. Therefore, the primary purpose of this work was to investigate the relationship between lift and drag coefficients, with free-stream velocities and angle of attacks, and to illustrate how fuzzy logic might play an important role in study of lift aerodynamic characteristics of an aircraft model with the addition of certain winglet configurations. Results of the developed fuzzy logic were compared with the experimental results. For lift coefficient analysis, the mean of actual and predicted values were 0.62 and 0.60 respectively. The coreelation between actual and predicted values (from FLS model) of lift coefficient in different angle of attack was found as 0.99. The mean relative error of actual and predicted valus was found as 5.18% for the velocity of 26.36 m/s which was found to be less than the acceptable limits (10%). The goodness of fit of prediction value was 0.95 which was close to 1.0.Keywords: Wind tunnel; Winglet; Lift coefficient; Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191115525 Designs of Temperature Measuring Device for a Re-Configured Milling Machine
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
The design of temperature measuring approach for a re-configured milling machine to produce friction stir welds is reported in this paper. The product design specifications for the redesigning of a milling machine were first outlined and the ranking criteria were determined. Three different concepts were generated for the temperature measurement on the reconfigured system and the preferred or the best concept was selected based on the set design ranking criteria. Further simulation and performance analysis was then conducted on the concept. The Infrared Thermography (IRT) concept was selected for the temperature measurement among other concepts generated because it is an ideal and most effective system of measurement in this regard.
Keywords: Clamping system, Friction Stir Welding, Reconfiguration, Support systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258015524 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73915523 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach
Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman
Abstract:
The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.
Keywords: AA6061, density, DOE, hot extrusion, microhardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71315522 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis
Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh
Abstract:
The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.
Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426215521 Construction of Intersection of Nondeterministic Finite Automata using Z Notation
Authors: Nazir Ahmad Zafar, Nabeel Sabir, Amir Ali
Abstract:
Functionalities and control behavior are both primary requirements in design of a complex system. Automata theory plays an important role in modeling behavior of a system. Z is an ideal notation which is used for describing state space of a system and then defining operations over it. Consequently, an integration of automata and Z will be an effective tool for increasing modeling power for a complex system. Further, nondeterministic finite automata (NFA) may have different implementations and therefore it is needed to verify the transformation from diagrams to a code. If we describe formal specification of an NFA before implementing it, then confidence over transformation can be increased. In this paper, we have given a procedure for integrating NFA and Z. Complement of a special type of NFA is defined. Then union of two NFAs is formalized after defining their complements. Finally, formal construction of intersection of NFAs is described. The specification of this relationship is analyzed and validated using Z/EVES tool.Keywords: Modeling, Nondeterministic finite automata, Znotation, Integration of approaches, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319115520 C@sa: Intelligent Home Control and Simulation
Authors: Berardina De Carolis, Giovanni Cozzolongo
Abstract:
In this paper, we present C@sa, a multiagent system aiming at modeling, controlling and simulating the behavior of an intelligent house. The developed system aims at providing to architects, designers and psychologists a simulation and control tool for understanding which is the impact of embedded and pervasive technology on people daily life. In this vision, the house is seen as an environment made up of independent and distributed devices, controlled by agents, interacting to support user's goals and tasks.
Keywords: Ambient intelligence, agent-based systems, influence diagrams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155315519 Global Chaos Synchronization of Identical and Nonidentical Chaotic Systems Using Only Two Nonlinear Controllers
Authors: Azizan Bin Saaban, Adyda Binti Ibrahim, Mohammad Shehzad, Israr Ahmad
Abstract:
In chaos synchronization, the main goal is to design such controller(s) that synchronizes the states of master and slave system asymptotically globally. This paper studied and investigated the synchronization problem of two identical Chen, and identical Tigan chaotic systems and two non-identical Chen and Tigan chaotic systems using Non-linear active control algorithm. In this study, based on Lyapunov stability theory and using non-linear active control algorithm, it has been shown that the proposed schemes have excellent transient performance using only two nonlinear controllers and have shown analytically as well as graphically that synchronization is asymptotically globally stable.
Keywords: Nonlinear Active Control, Chen and Tigan Chaotic systems, Lyapunov Stability theory, Synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974