Search results for: standard deviation of temperature
2652 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink
Authors: J. Y. Jang, C. Y. Tseng
Abstract:
A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. The effects of different operating conditions, including various inlet velocities (Vin= 1, 3, 5 m/s), inlet temperatures (Tgas = 450, 550, 650K) and different fin height (0 to 150 mm) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.
Keywords: Thermoelectric generator, Waste heat recovery, Elliptical pin-fin heat sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24492651 Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions
Authors: Camila da Silva, Simone Belorte de Andrade, Vitor Augusto dos Santos Garcia, Vladimir Ferreira Cabral, J. Vladimir Oliveira Lúcio Cardozo-Filho
Abstract:
In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (> 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration.
Keywords: Packed bed reactor, ethyl esters, continuous process, catalyst-free process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12972650 Simulation Model for Predicting Dengue Fever Outbreak
Authors: Azmi Ibrahim, Nor Azan Mat Zin, Noraidah Sahari Ashaari
Abstract:
Dengue fever is prevalent in Malaysia with numerous cases including mortality recorded over the years. Public education on the prevention of the desease through various means has been carried out besides the enforcement of legal means to eradicate Aedes mosquitoes, the dengue vector breeding ground. Hence, other means need to be explored, such as predicting the seasonal peak period of the dengue outbreak and identifying related climate factors contributing to the increase in the number of mosquitoes. Simulation model can be employed for this purpose. In this study, we created a simulation of system dynamic to predict the spread of dengue outbreak in Hulu Langat, Selangor Malaysia. The prototype was developed using STELLA 9.1.2 software. The main data input are rainfall, temperature and denggue cases. Data analysis from the graph showed that denggue cases can be predicted accurately using these two main variables- rainfall and temperature. However, the model will be further tested over a longer time period to ensure its accuracy, reliability and efficiency as a prediction tool for dengue outbreak.Keywords: dengue fever, prediction, system dynamic, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23362649 Principal Type of Water Responsible for Damage of Concrete Repeated Freeze-Thaw Cycles
Authors: L. Dahmani
Abstract:
The first and basic cause of the failure of concrete is repeated freezing (thawing) of moisture contained in the pores, microcracks, and cavities of the concrete. On transition to ice, water existing in the free state in cracks increases in volume, expanding the recess in which freezing occurs. A reduction in strength below the initial value is to be expected and further cycle of freezing and thawing have a further marked effect. By using some experimental parameters like nuclear magnetic resonance variation (NMR), enthalpy-temperature (or heat capacity) variation, we can resolve between the various water states and their effect on concrete properties during cooling through the freezing transition temperature range. The main objective of this paper is to describe the principal type of water responsible for the reduction in strength and structural damage (frost damage) of concrete following repeated freeze –thaw cycles. Some experimental work was carried out at the institute of cryogenics to determine what happens to water in concrete during the freezing transition.
Keywords: Concrete, frost proof, strength, water diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17942648 Screening of Factors Affecting the Enzymatic Hydrolysis of Empty Fruit Bunches in Aqueous Ionic Liquid and Locally Produced Cellulase System
Authors: Md. Z. Alam, Amal A. Elgharbawy, Muhammad Moniruzzaman, Nassereldeen A. Kabbashi, Parveen Jamal
Abstract:
The enzymatic hydrolysis of lignocellulosic biomass is one of the obstacles in the process of sugar production, due to the presence of lignin that protects the cellulose molecules against cellulases. Although the pretreatment of lignocellulose in ionic liquid (IL) system has been receiving a lot of interest; however, it requires IL removal with an anti-solvent in order to proceed with the enzymatic hydrolysis. At this point, introducing a compatible cellulase enzyme seems more efficient in this process. A cellulase enzyme that was produced by Trichoderma reesei on palm kernel cake (PKC) exhibited a promising stability in several ILs. The enzyme called PKC-Cel was tested for its optimum pH and temperature as well as its molecular weight. One among evaluated ILs, 1,3-diethylimidazolium dimethyl phosphate [DEMIM] DMP was applied in this study. Evaluation of six factors was executed in Stat-Ease Design Expert V.9, definitive screening design, which are IL/ buffer ratio, temperature, hydrolysis retention time, biomass loading, cellulase loading and empty fruit bunches (EFB) particle size. According to the obtained data, IL-enzyme system shows the highest sugar concentration at 70 °C, 27 hours, 10% IL-buffer, 35% biomass loading, 60 Units/g cellulase and 200 μm particle size. As concluded from the obtained data, not only the PKC-Cel was stable in the presence of the IL, also it was actually stable at a higher temperature than its optimum one. The reducing sugar obtained was 53.468±4.58 g/L which was equivalent to 0.3055 g reducing sugar/g EFB. This approach opens an insight for more studies in order to understand the actual effect of ILs on cellulases and their interactions in the aqueous system. It could also benefit in an efficient production of bioethanol from lignocellulosic biomass.Keywords: Cellulase, hydrolysis, lignocellulose, pretreatment, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14872647 Intelligent Irrigation Control System Using Wireless Sensors and Android Application
Authors: Rajeshwari Madli, Santhosh Hebbar, Vishwanath Heddoori, G. V. Prasad
Abstract:
Agriculture is the major occupation in India and forms the backbone of Indian economy in which irrigation plays a crucial role for increasing the quality and quantity of crop yield. In spite of many revolutionary advancements in agriculture, there has not been a dramatic increase in agricultural performance. Lack of irrigation infrastructure and agricultural knowledge are the critical factors influencing agricultural performance. However, by using advanced agricultural equipment, the effect of these factors can be curtailed. The presented system aims at increasing the yield of crops by using an intelligent irrigation controller that makes use of wireless sensors. Sensors are used to monitor primary parameters such as soil moisture, soil pH, temperature and humidity. Irrigation decisions are taken based on the sensed data and the type of crop being grown. The system provides a mobile application in which farmers can remotely monitor and control the irrigation system. Also, the water pump is protected against damages due to voltage variations and dry running.Keywords: Android application, Bluetooth, humidity, irrigation, soil moisture, soil pH, temperature, wireless sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29972646 Optimization of Human Comfort Reaction for Suspended Cabin Tractor Semitrailer Drivers
Authors: L.A.Kumaraswamidhas, P.Velmurugan, K.Sankaranarayanasamy
Abstract:
This work has been conducted to study on comfort level of drivers of suspended cabin tractor semitrailer. Some drivers suffer from low back pain caused by vibration. The practical significance of applying suspended cabin type of tractor semi trailer was tested at different road conditions, different speed as well as different load conditions for comfortable driver seat interface (x, y, z ) and the process parameters have been prioritized using Taguchi-s L27 orthogonal array. Genetic Algorithm (GA) is used to optimize the human comfort vibration of suspended cabin tractor semitrailer drivers. The practical significance of applying GA to human comfort to reaction of suspended cabin tractor semitrailer has been validated by means of computing the deviation between predicted and experimentally obtained human comfort to vibration. The optimized acceleration data indicate a little uncomfortable ride for suspended cabin tractor semitrailer.
Keywords: Genetic Algorithm, Ride Comfort, Taguchi Method, Tractor Semitrailer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25592645 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption
Authors: G.Ashwini, A.T.Eswara
Abstract:
This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22442644 Sorption of Nickel by Hypnea Valentiae: Application of Response Surface Methodology
Authors: M. Rajasimman, K. Murugaiyan
Abstract:
In this work, sorption of nickel from aqueous solution on hypnea valentiae, red macro algae, was investigated. Batch experiments have been carried out to find the effect of various parameters such as pH, temperature, sorbent dosage, metal concentration and contact time on the sorption of nickel using hypnea valentiae. Response surface methodology (RSM) is employed to optimize the process parameters. Based on the central composite design, quadratic model was developed to correlate the process variables to the response. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the sorption of nickel were found to be: pH – 5.1, temperature – 36.8oC, sorbent dosage – 5.1 g/L, metal concentration – 100 mg/L and contact time – 30 min. At these optimized conditions the maximum removal of nickel was found to be 91.97%. A coefficient of determination R2 value 0.9548 shows the fitness of response surface methodology in this work.
Keywords: Optimization, metal, Hypnea valentia, response surface methodology, red algae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622643 Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery
Authors: Buket Boz, Alvaro Diez
Abstract:
Waste heat recovery by means of Organic Rankine Cycle is a promising technology for the recovery of engine exhaust heat. However, it is complex to find out the optimum cycle conditions with appropriate working fluids to match exhaust gas waste heat due to its high temperature. Hence, this paper focuses on comparing sub-critical and supercritical ORC conditions with eight working fluids on a combined diesel engine-ORC system. The model employs two ORC designs, Regenerative-ORC and Pre-Heating-Regenerative-ORC respectively. The thermodynamic calculations rely on the first and second law of thermodynamics, thermal efficiency and exergy destruction factors are the fundamental parameters evaluated. Additionally, in this study, environmental and safety, GWP (Global Warming Potential) and ODP (Ozone Depletion Potential), characteristic of the refrigerants are taken into consideration as evaluation criteria to define the optimal ORC configuration and conditions. Consequently, the studys outcomes reveal that supercritical ORCs with alkane and siloxane are more suitable for high temperature exhaust waste heat recovery in contrast to sub-critical conditions.Keywords: Internal combustion engine, organic rankine cycle, waste heat recovery, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12692642 A Hybrid Approach for Quantification of Novelty in Rule Discovery
Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar
Abstract:
Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.
Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13542641 An Indispensable Parameter in Lipid Ratios to Discriminate between Morbid Obesity and Metabolic Syndrome in Children: High Density Lipoprotein Cholesterol
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity is a low-grade inflammatory disease and may lead to health problems such as hypertension, dyslipidemia, diabetes. It is also associated with important risk factors for cardiovascular diseases. This requires the detailed evaluation of obesity, particularly in children. The aim of this study is to enlighten the potential associations between lipid ratios and obesity indices and to introduce those with discriminating features among children with obesity and metabolic syndrome (MetS). A total of 408 children (aged between six and eighteen years) participated in the scope of the study. Informed consent forms were taken from the participants and their parents. Ethical Committee approval was obtained. Anthropometric measurements such as weight, height as well as waist, hip, head, neck circumferences and body fat mass were taken. Systolic and diastolic blood pressure values were recorded. Body mass index (BMI), diagnostic obesity notation model assessment index-II (D2 index), waist-to-hip, head-to-neck ratios were calculated. Total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDLChol), low-density lipoprotein cholesterol (LDLChol) analyses were performed in blood samples drawn from 110 children with normal body weight, 164 morbid obese (MO) children and 134 children with MetS. Age- and sex-adjusted BMI percentiles tabulated by World Health Organization were used to classify groups; normal body weight, MO and MetS. 15th-to-85th percentiles were used to define normal body weight children. Children, whose values were above the 99th percentile, were described as MO. MetS criteria were defined. Data were evaluated statistically by SPSS Version 20. The degree of statistical significance was accepted as p≤0.05. Mean±standard deviation values of BMI for normal body weight children, MO children and those with MetS were 15.7±1.1, 27.1±3.8 and 29.1±5.3 kg/m2, respectively. Corresponding values for the D2 index were calculated as 3.4±0.9, 14.3±4.9 and 16.4±6.7. Both BMI and D2 index were capable of discriminating the groups from one another (p≤0.01). As far as other obesity indices were considered, waist-to hip and head-to-neck ratios did not exhibit any statistically significant difference between MO and MetS groups (p≥0.05). Diagnostic obesity notation model assessment index-II was correlated with the triglycerides-to-HDL-C ratio in normal body weight and MO (r=0.413, p≤0.01 and r=0.261, (p≤0.05, respectively). Total cholesterol-to-HDL-C and LDL-C-to-HDL-C showed statistically significant differences between normal body weight and MO as well as MO and MetS (p≤0.05). The only group in which these two ratios were significantly correlated with waist-to-hip ratio was MetS group (r=0.332 and r=0.334, p≤0.01, respectively). Lack of correlation between the D2 index and the triglycerides-to-HDL-C ratio was another important finding in MetS group. In this study, parameters and ratios, whose associations were defined previously with increased cardiovascular risk or cardiac death have been evaluated along with obesity indices in children with morbid obesity and MetS. Their profiles during childhood have been investigated. Aside from the nature of the correlation between the D2 index and triglycerides-to-HDL-C ratio, total cholesterol-to-HDL-C as well as LDL-C-to- HDL-C ratios along with their correlations with waist-to-hip ratio showed that the combination of obesity-related parameters predicts better than one parameter and appears to be helpful for discriminating MO children from MetS group.
Keywords: Children, lipid ratios, metabolic syndrome, obesity indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8372640 Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor
Authors: Chin S. Y., Radzi, S. N. R., Maharon, I. H., Shafawi, M. A.
Abstract:
A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.Keywords: kinetic model, dehydrogenation, simulation, modeling, propane
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44342639 Development of Cooling Demand by Computerize
Authors: Bobby Anak John, Zamri Noranai, Md. Norrizam Mohmad Jaat, Hamidon Salleh, Mohammad Zainal Md Yusof
Abstract:
Air conditioning is mainly use as human comfort cooling medium. It use more in high temperatures are country such as Malaysia. Proper estimation of cooling load will archive ideal temperature. Without proper estimation can lead to over estimation or under estimation. The ideal temperature should be comfort enough. This study is to develop a program to calculate an ideal cooling load demand, which is match with heat gain. Through this study, it is easy to calculate cooling load estimation. Objective of this study are to develop user-friendly and easy excess cooling load program. This is to insure the cooling load can be estimate by any of the individual rather than them using rule-of-thumb. Developed software is carryout by using Matlab-GUI. These developments are only valid for common building in Malaysia only. An office building was select as case study to verify the applicable and accuracy of develop software. In conclusion, the main objective has successfully where developed software is user friendly and easily to estimate cooling load demand.Keywords: Cooling Load, Heat Gain, Building and GUI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20402638 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands
Authors: Ilham S. M. Elsayed
Abstract:
The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.
Keywords: Urban heat island, Alahsa Governorate, weather station, population density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11292637 Hydrogen from Waste Tyres
Authors: Ibrahim F. Elbaba, Paul T. Williams
Abstract:
Hydrogen is regarded to play an important role in future energy systems because it can be produced from abundant resources and its combustion only generates water. The disposal of waste tyres is a major problem in environmental management throughout the world. The use of waste materials as a source of hydrogen is particularly of interest in that it would also solve a waste treatment problem. There is much interest in the use of alternative feedstocks for the production of hydrogen since more than 95% of current production is from fossil fuels. The pyrolysis of waste tyres for the production of liquid fuels, activated carbons and gases has been extensively researched. However, combining pyrolysis with gasification is a novel process that can gasify the gaseous products from pyrolysis. In this paper, an experimental investigation into the production of hydrogen and other gases from the bench scale pyrolysis-gasification of tyres has been investigated. Experiments were carried using a two stage system consisting of pyrolysis of the waste tyres followed by catalytic steam gasification of the evolved gases and vapours in a second reactor. Experiments were conducted at a pyrolysis temperature of 500 °C using Ni/Al2O3 as a catalyst. The results showed that there was a dramatic increase in gas yield and the potential H2 production when the gasification temperature was increased from 600 to 900 oC. Overall, the process showed that high yields of hydrogen can be produced from waste tyres.Keywords: Catalyst, Hydrogen, Pyrolysis, Gasification, Tyre, Waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29582636 A PSO-based SSSC Controller for Improvement of Transient Stability Performance
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.
Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26902635 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application
Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat
Abstract:
Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.
Keywords: Internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16202634 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis
Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar
Abstract:
In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26142633 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application
Authors: K. Masera, A. K. Hossain
Abstract:
Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.
Keywords: Biodiesel, blending, characterisation, CI Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8042632 Synthesis of Activated Carbon Using Agricultural Wastes from Biodiesel Production
Authors: A. Buasri, N. Chaiyut, V. Loryuenyong, E. Phakdeepataraphan, S. Watpathomsub, V. Kunakemakorn
Abstract:
In this research, the optimum conditions for the synthesis of activated carbon from biodiesel wastes such as palm shells (PS) and Jatropha curcas fruit shells (JS) by chemical activation method using potassium hydroxide (KOH) as an activating agent under nitrogen atmosphere were investigated. The effects of soaking in hydrofluoric acid (HF), impregnation ratio, activation temperature and activation time on adsorption capacity of methylene blue (MB) and iodine (I2) solution were examined. The results showed that HF-treated activated carbons exhibited higher adsorption capacities by eliminating ash residues, which might fill up the pores. In addition, the adsorption capacities of methylene blue and iodine solution were also significantly influenced by the types of raw materials, the activation temperature and the activation time. The highest adsorption capacity of methylene blue 257.07mg/g and iodine 847.58mg/g were obtained from Jatropha curcas wastes.
Keywords: Activated Carbon, Palm Shells (PS), Jatropha Curcas Fruit Shells (JS), Agricultural Wastes, Biodiesel Wastes, Optimum Conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41912631 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri
Abstract:
Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.
Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32082630 Construction of Strain Distribution Profiles of EDD Steel at Elevated Temperatures
Authors: Eshwara K. Prasad, Raman R. Goud, Swadesh Kumar Singh, N. Sateesh
Abstract:
In the present work, forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretchforming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain, distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening COEFFICIENT (n) and normal anisotropy (r−). Mechanical properties of EDD steel from room temperature to 4500C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. In addition, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, microhardness, strain distribution profile, stretch forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342629 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.
Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982628 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching
Authors: Ly. Benbahouche
Abstract:
Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics.
The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments.
The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device).
Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.
Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25872627 Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation
Authors: Nahid Ghasemi, Morteza Sohrabi, Yasan Soleymani
Abstract:
The quantified residence time distribution (RTD) provides a numerical characterization of mixing in a reactor, thus allowing the process engineer to better understand mixing performance of the reactor.This paper discusses computational studies to investigate flow patterns in a two impinging streams cyclone reactor(TISCR) . Flow in the reactor was modeled with computational fluid dynamics (CFD). Utilizing the Eulerian- Lagrangian approach, implemented in FLUENT (V6.3.22), particle trajectories were obtained by solving the particle force balance equations. From simulation results obtained at different Δts, the mean residence time (tm) and the mean square deviation (σ2) were calculated. a good agreement can be observed between predicted and experimental data. Simulation results indicate that the behavior of complex reactor systems can be predicted using the CFD technique with minimum data requirement for validation.Keywords: Impinging streams reactor, Residence timedistribution, CFD, Eulerian-Lagrangian approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23792626 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample
Authors: Suwimon Saneewong Na Ayuttaya
Abstract:
This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10862625 Soliton Interaction in Birefringent Fibers with Third-Order Dispersion
Authors: Dowluru Ravi Kumar, Bhima Prabhakara Rao
Abstract:
Propagation of solitons in single-mode birefringent fibers is considered under the presence of third-order dispersion (TOD). The behavior of two neighboring solitons and their interaction is investigated under the presence of third-order dispersion with different group velocity dispersion (GVD) parameters. It is found that third-order dispersion makes the resultant soliton to deviate from its ideal position and increases the interaction between adjacent soliton pulses. It is also observed that this deviation due to third-order dispersion is considerably small when the optical pulse propagates at wavelengths relatively far from the zerodispersion. Modified coupled nonlinear Schrödinger-s equations (CNLSE) representing the propagation of optical pulse in single mode fiber with TOD are solved using split-step Fourier algorithm. The results presented in this paper reveal that the third-order dispersion can substantially increase the interaction between the solitons, but large group velocity dispersion reduces the interaction between neighboring solitons.
Keywords: Birefringence, Group velocity dispersion, Polarization mode dispersion, Soliton interaction, Third order dispersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12252624 Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation
Authors: T. S. Iwayama, T. Hama
Abstract:
Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.Keywords: Ion implantation, photoluminescence, pulsed laser deposition, rapid thermal anneal, Si nanocrystals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17192623 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media
Authors: A. Mahdy
Abstract:
The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.
Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538