Search results for: computer games for learning
1691 Evaluating per-user Fairness of Goal-Oriented Parallel Computer Job Scheduling Policies
Authors: Sangsuree Vasupongayya
Abstract:
Fair share objective has been included into the goaloriented parallel computer job scheduling policy recently. However, the previous work only presented the overall scheduling performance. Thus, the per-user performance of the policy is still lacking. In this work, the details of per-user fair share performance under the Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair share priority backfill policy namely RelShare(1d) is also studied. The performance of all policies is collected using an event-driven simulator with three real job traces as input. The experimental results show that the high demand users are usually benefited under most policies because their jobs are large or they have a lot of jobs. In the large job case, one job executed may result in over-share during that period. In the other case, the jobs may be backfilled for performances. However, the users with a mixture of jobs may suffer because if the smaller jobs are executing the priority of the remaining jobs from the same user will be lower. Further analysis does not show any significant impact of users with a lot of jobs or users with a large runtime approximation error.Keywords: deviation, fair share, discrepancy search, priority scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13521690 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.
Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191689 FITTER - A Framework for Integrating Activity Tracking Technologies into Electric Recreation for Children and Adolescents
Authors: R. Altamimi, G. Skinner, K. Nesbitt
Abstract:
Encouraging physical activity amongst children and adolescents is becoming an increasingly relevant issue in modern society. Studies have shown that involving children and adolescents in physical activity is essential for their physical, mental and social development. However, with technology playing an increasingly important role in reducing physical work it is becoming more critical to incorporate adequate physical activities into our lives. One way to overcome this problem is to harness technology so that it promotes physical activities, for example, by motivating children and adolescents to exercise more. This paper describes a promising solution to the question of how to increase levels of physical activity in children and adolescents by combining gaming technologies with exercise tracking goals. This research describes a framework called FITTER (Framework for Integrating activity Tracking Technologies for Electronic Recreation) that combines video game play with more traditional, non-computer physical activities.
Keywords: Exergames, Home-based eHealth, Human-computer Interaction, Natural User Interfaces, Wearable Health Informatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24471688 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code
Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev
Abstract:
This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late “in-vessel” phase. The purpose of the analyses is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. The times for HPP injection were chosen based on previously performed investigations.Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14421687 Blind Image Deconvolution by Neural Recursive Function Approximation
Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu
Abstract:
This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.
Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611686 Digital Learning and Entrepreneurship Education: Changing Paradigms
Authors: Shivangi Agrawal, Hsiu-I Ting
Abstract:
Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g. online entrepreneurship education courses and programs) and other digital tools (e.g. digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.
Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17071685 A P2P File Sharing Technique by Indexed-Priority Metric
Authors: Toshinori Takabatake, Yoshikazu Komano
Abstract:
Recently, the improvements in processing performance of a computer and in high speed communication of an optical fiber have been achieved, so that the amount of data which are processed by a computer and flowed on a network has been increasing greatly. However, in a client-server system, since the server receives and processes the amount of data from the clients through the network, a load on the server is increasing. Thus, there are needed to introduce a server with high processing ability and to have a line with high bandwidth. In this paper, concerning to P2P networks to resolve the load on a specific server, a criterion called an Indexed-Priority Metric is proposed and its performance is evaluated. The proposed metric is to allocate some files to each node. As a result, the load on a specific server can distribute them to each node equally well. A P2P file sharing system using the proposed metric is implemented. Simulation results show that the proposed metric can make it distribute files on the specific server.Keywords: peer-to-peer, file-sharing system, load-balancing, dependability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13871684 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding
Authors: S. Shubha, B. N. Meera
Abstract:
Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.
Keywords: Electric Force, Interactive, Representation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331683 A Bayesian Kernel for the Prediction of Protein- Protein Interactions
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21641682 A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System
Authors: Ji-Hye Kim, Sung-Gaun Kim
Abstract:
Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESimKeywords: Power steering system, Electro-Hydraulic power steering (EHPS) system, Modeling of EHPS system, Analysis modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27071681 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.
Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531680 Creative Teaching of New Product Development to Operations Managers
Authors: Marco Leite, J. M. Vilas-Boas da Silva, Isabel Duarte de Almeida
Abstract:
New Product Development (NPD) has got its roots on an Engineering background. Thus, one might wonder about the interest, opportunity, contents and delivery process, if students from soft sciences were involved. This paper addressed «What to teach?» and «How to do it?», as the preliminary research questions that originated the introduced propositions. The curriculum-developer model that was purposefully chosen to adapt the coursebook by pursuing macro/micro strategies was found significant by an exploratory qualitative case study. Moreover, learning was developed and value created by implementing the institutional curriculum through a creative, hands-on, experiencing, problem-solving, problem-based but organized teamwork approach. Product design of an orange squeezer complying with ill-defined requirements, including drafts, sketches, prototypes, CAD simulations and a business plan, plus a website, written reports and presentations were the deliverables that confirmed an innovative contribution towards research and practice of teaching and learning of engineering subjects to non-specialist operations managers candidates.
Keywords: Teaching Engineering to Non-specialists, Operations Managers Education, Teamwork, Product Design and Development, Market- driven NPD, Curriculum development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24101679 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia
Authors: Rana M. Zeina, Laila AL-Ayadhi, Shahid Bashir
Abstract:
The association between sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a Neuropsychological Test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/little circle (BLC), Simple Reaction Time (SRT) Intra /Extra dimensional set shift (IED), Spatial recognition memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. ASDs individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to a stimulus.
Keywords: Visual memory, Attention, Autism Spectrum Disorders (ASDs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25351678 Alignment between Understanding and Assessment Practice among Secondary School Teachers
Authors: Eftah Bte. Moh @ Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor
Abstract:
This study aimed to identify the alignment of understanding and assessment practices among secondary school teachers. The study was carried out using quantitative descriptive study. The sample consisted of 164 teachers who taught Form 1 and 2 from 11 secondary schools in the district of North Kinta, Perak, Malaysia. Data were obtained from 164 respondents who answered Expectation Alignment Understanding and Practices of School Assessment (PEKDAPS) questionnaire. The data were analysed using SPSS 17.0+. The Cronbach’s alpha value obtained through PEKDAPS questionnaire pilot study was 0.86. The results showed that teachers' performance in PEKDAPS based on the mean value was less than 3, which means that perfect alignment does not occur between the understanding and practices of school assessment. Two major PEKDAPS sub-constructs of articulation across grade and age and usability of the system were higher than the moderate alignment of the understanding and practices of school assessment (Min=2.0). The content focused of PEKDAPs sub-constructs which showed lower than the moderate alignment of the understanding and practices of school assessment (Min=2.0). Another two PEKDAPS subconstructs of transparency and fairness and the pedagogical implications showed moderate alignment (2.0). The implications of the study is that teachers need to fully understand the importance of alignment among components of assessment, learning and teaching and learning objectives as strategies to achieve quality assessment process.
Keywords: Alignment, assessment practices, School Based Assessment, understanding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20021677 A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area
Authors: Kiriaki-Maria Fameli, Vasiliki D. Assimakopoulos, Vasiliki Kotroni
Abstract:
The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, few recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.Keywords: Photochemical modelling, urban pollution, greater Athens area, MM5/CAMx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13671676 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools
Authors: Tung-Hui Hsu, Wen-Yuh Jywe
Abstract:
Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.
Keywords: Calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41681675 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers
Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem
Abstract:
As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52541674 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.
Keywords: credit card fraud detection, user authentication, behavioral biometrics, machine learning, literature survey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5441673 Lean Manufacturing: Systematic Layout Planning Application to an Assembly Line Layout of a Welding Industry
Authors: Fernando Augusto Ullmann Tobe, Moacyr Amaral Domingues, Figueiredo, Stephany Rie Yamamoto Gushiken
Abstract:
The purpose of this paper is to present the process of elaborating the layout of an assembly line of a welding industry using the principles of lean manufacturing as the main driver. The objective of this paper is relevant since the current layout of the assembly line causes non-productive times for operators, being related to the lean waste of unnecessary movements. The methodology used for the project development was Project-based Learning (PBL), which is an active way of learning focused on real problems. The process of selecting the methodology for layout planning was developed considering three criteria to evaluate the most relevant one for this paper's goal. As a result of this evaluation, Systematic Layout Planning was selected, and three steps were added to it – Value Stream Mapping for the current situation and after layout changed and the definition of lean tools and layout type. This inclusion was to consider lean manufacturing in the layout redesign of the industry. The layout change resulted in an increase in the value-adding time of operations carried out in the sector, reduction in movement times between previous and final assemblies, and in cost savings regarding the man-hour value of the employees, which can be invested in productive hours instead of movement times.
Keywords: Assembly line, layout, lean manufacturing, systematic layout planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8261672 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta
Authors: Christiana Gauci-Sciberras
Abstract:
The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.
Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5051671 Multi-Enterprise Tie and Co-Operation Mechanism in Mexican Agro Industry SME's
Authors: Tania Elena González Alvarado, Ma. Antonieta Martín Granados
Abstract:
The aim of this paper is to explain what a multienterprise tie is, what evidence its analysis provides and how does the cooperation mechanism influence the establishment of a multienterprise tie. The study focuses on businesses of smaller dimension, geographically dispersed and whose businessmen are learning to cooperate in an international environment. The empirical evidence obtained at this moment permits to conclude the following: The tie is not long-lasting, it has an end; opportunism is an opportunity to learn; the multi-enterprise tie is a space to learn about the cooperation mechanism; the local tie permits a businessman to alternate between competition and cooperation strategies; the disappearance of a tie is an experience of learning for a businessman, diminishing the possibility of failure in the next tie; the cooperation mechanism tends to eliminate hierarchical relations; the multienterprise tie diminishes the asymmetries and permits SME-s to have a better position when they negotiate with large companies; the multi-enterprise tie impacts positively on the local system. The collection of empirical evidence was done trough the following instruments: direct observation in a business encounter to which the businesses attended in 2003 (202 Mexican agro industry SME-s), a survey applied in 2004 (129), a questionnaire applied in 2005 (86 businesses), field visits to the businesses during the period 2006-2008 and; a survey applied by telephone in 2008 (55 Mexican agro industry SME-s).
Keywords: Cooperation, multi-enterprise tie, links, networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12731670 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19371669 Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement
Authors: Goh Yung Hong, Mona Masood
Abstract:
This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.
Keywords: Conventional teaching method, Gamification teaching method, Motivation, Engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58101668 Machine Scoring Model Using Data Mining Techniques
Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul
Abstract:
this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13951667 Ensemble Learning with Decision Tree for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.Keywords: Ensemble learning, decision tree, remote sensingclassification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25841666 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8781665 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771664 Development of Online Islamic Medication Expert System (OIMES)
Authors: Hanita Daud, Noorhana Yahya, Low Tan Jung, Azizuddin Abd Aziz, Rabibah Ahmad Samawe
Abstract:
This paper presents an overview of the design and implementation of an online rule-based Expert Systems for Islamic medication. T his Online Islamic Medication Expert System (OIMES) focuses on physical illnesses only. Knowledge base of this Expert System contains exhaustively the types of illness together with their related cures or treatments/therapies, obtained exclusively from the Quran and Hadith. Extensive research and study are conducted to ensure that the Expert System is able to provide the most suitable treatment with reference to the relevant verses cited in Quran or Hadith. These verses come together with their related 'actions' (bodily actions/gestures or some acts) to be performed by the patient to treat a particular illness/sickness. These verses and the instructions for the 'actions' are to be displayed unambiguously on the computer screen. The online platform provides the advantage for patient getting treatment practically anytime and anywhere as long as the computer and Internet facility exist. Patient does not need to make appointment to see an expert for a therapy.Keywords: Expert System, Quran and Hadith, Islamic Medication, Rule-Based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391663 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301662 Learning to Recognize Faces by Local Feature Design and Selection
Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu
Abstract:
Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.Keywords: Face recognition, local feature, AdaBoost, subspace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597