Search results for: two-phase flow
772 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die
Authors: Muhammad Sohail Khan, Rehan Ali Shah
Abstract:
The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.Keywords: Wire coating die, Corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058771 Numerical Simulations of Flood and Inundation in Jobaru River Basin Using Laser Profiler Data
Authors: Hiroto Nakashima, Toshihiro Morita, Koichiro Ohgushi
Abstract:
Laser Profiler (LP) data from aerial laser surveys have been increasingly used as topographical inputs to numerical simulations of flooding and inundation in river basins. LP data has great potential for reproducing topography, but its effective usage has not yet been fully established. In this study, flooding and inundation are simulated numerically using LP data for the Jobaru River basin of Japan’s Saga Plain. The analysis shows that the topography is reproduced satisfactorily in the computational domain with urban and agricultural areas requiring different grid sizes. A 2-D numerical simulation shows that flood flow behavior changes as grid size is varied.
Keywords: LP data, numerical simulation, topological analysis, mesh size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549770 Optical Characterization of a Microwave Plasma Torch for Hydrogen Production
Authors: Babajide O. Ogungbesan, Rajneesh Kumar, Mohamed Sassi
Abstract:
Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.
Keywords: Atmospheric pressure microwave plasma, gas dissociation, optical emission spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286769 Development of a New CFD Multi-Coupling Tool Based on Immersed Boundary Method: toward SRM Analysis
Authors: Ho Phu TRAN, Frédéric PLOURDE
Abstract:
The ongoing effort to develop an in-house compressible solver with multi-disciplinary physics is presented in this paper. Basic compressible solver combined with IBM technique provides us an effective numerical tool able to tackle the physics phenomena and especially physic phenomena involved in Solid Rocket Motors (SRMs). Main principles are introduced step by step describing its implementation. This paper sheds light on the whole potentiality of our proposed numerical model and we strongly believe a way to introduce multi-physics mechanisms strongly coupled is opened to ablation in nozzle, fluid/structure interaction and burning propellant surface with time.Keywords: Compressible Flow, Immersed Boundary Method, Multi-disciplinary physics, Solid Rocket Motors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843768 Optimisation of A Phase Change Thermal Storage System
Authors: Nasrul Amri Mohd Amin, Martin Belusko, Frank Bruno
Abstract:
PCMs have always been viewed as a suitable candidate for off peak thermal storage, particularly for refrigeration systems, due to the high latent energy densities of these materials. However, due to the need to have them encapsulated within a container this density is reduced. Furthermore, PCMs have a low thermal conductivity which reduces the useful amount of energy which can be stored. To consider these factors, the true energy storage density of a PCM system was proposed and optimised for PCMs encapsulated in slabs. Using a validated numerical model of the system, a parametric study was undertaken to investigate the impact of the slab thickness, gap between slabs and the mass flow rate. The study showed that, when optimised, a PCM system can deliver a true energy storage density between 53% and 83% of the latent energy density of the PCM.Keywords: Phase change material, refrigeration, sustainability, thermal energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310767 Periodic Control of a Reverse Osmosis Water Desalination Unit
Authors: Ali Emad
Abstract:
Enhancement of the performance of a reverse osmosis (RO) unit through periodic control is studied. The periodic control manipulates the feed pressure and flow rate of the RO unit. To ensure the periodic behavior of the inputs, the manipulated variables (MV) are transformed into the form of sinusoidal functions. In this case, the amplitude and period of the sinusoidal functions become the surrogate MV and are thus regulated via nonlinear model predictive control algorithm. The simulation results indicated that the control system can generate cyclic inputs necessary to enhance the closedloop performance in the sense of increasing the permeate production and lowering the salt concentration. The proposed control system can attain its objective with arbitrary set point for the controlled outputs. Successful results were also obtained in the presence of modeling errors.Keywords: Reverse osmosis, water desalination, periodic control, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252766 The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation
Authors: S. A. Kondratyev, O. I. Ibragimova
Abstract:
The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.
Keywords: Criterion of action of physically adsorbed reagent, flotation, saturated fatty acids, surface pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882765 Measurement of Greenhouse Gas Emissions from Sugarcane Plantation Soil in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Continuous measurements of greenhouse gases (GHGs) emitted from soils are required to understand diurnal and seasonal variations in soil emissions and related mechanism. This understanding plays an important role in appropriate quantification and assessment of the overall change in soil carbon flow and budget. This study proposes to monitor GHGs emissions from soil under sugarcane cultivation in Thailand. The measurements were conducted over 379 days. The results showed that the total net amount of GHGs emitted from sugarcane plantation soil amounts to 36 Mg CO2eq ha-1. Carbon dioxide (CO2) and nitrous oxide (N2O) were found to be the main contributors to the emissions. For methane (CH4), the net emission was found to be almost zero. The measurement results also confirmed that soil moisture content and GHGs emissions are positively correlated.
Keywords: Soil, GHG emission, Sugarcane, Agriculture, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453764 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA
Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani
Abstract:
In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420763 Genetic Algorithm Approach for Solving the Falkner–Skan Equation
Authors: Indu Saini, Phool Singh, Vikas Malik
Abstract:
A novel method based on Genetic Algorithm to solve the boundary value problems (BVPs) of the Falkner–Skan equation over a semi-infinite interval has been presented. In our approach, we use the free boundary formulation to truncate the semi-infinite interval into a finite one. Then we use the shooting method based on Genetic Algorithm to transform the BVP into initial value problems (IVPs). Genetic Algorithm is used to calculate shooting angle. The initial value problems arisen during shooting are computed by Runge-Kutta Fehlberg method. The numerical solutions obtained by the present method are in agreement with those obtained by previous authors.
Keywords: Boundary Layer Flow, Falkner–Skan equation, Genetic Algorithm, Shooting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518762 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers
Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke
Abstract:
In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.Keywords: Polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784761 Natural Ventilation as a Design Strategy for Energy Saving
Authors: Zahra Ghiabaklou
Abstract:
Ventilation is a fundamental requirement for occupant health and indoor air quality in buildings. Natural ventilation can be used as a design strategy in free-running buildings to: • Renew indoor air with fresh outside air and lower room temperatures at times when the outdoor air is cooler. • Promote air flow to cool down the building structure (structural cooling). • Promote occupant physiological cooling processes (comfort cooling). This paper focuses on ways in which ventilation can provide the mechanism for heat dissipation and cooling of the building structure..It also discusses use of ventilation as a means of increasing air movement to improve comfort when indoor air temperatures are too high. The main influencing factors and design considerations and quantitative guidelines to help meet the design objectives are also discussed.Keywords: Natural Ventilation, Sustainable Building, Passive Cooling, Energy Saving
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683760 Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix
Authors: Nursyarizal Mohd Nor, Ramiah Jegatheesan, Perumal Nallagownden
Abstract:
Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.Keywords: State Estimation (SE), Weight Least Square (WLS), Newton-Raphson State Estimation (NRSE), Jacobian matrix H.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480759 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate
Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy
Abstract:
LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.
Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635758 Laminar Impinging Jet Heat Transfer for Curved Plates
Authors: A. M. Tahsini, S. Tadayon Mousavi
Abstract:
The purpose of the present study is to analyze the effect of the target plate-s curvature on the heat transfer in laminar confined impinging jet flows. Numerical results from two dimensional compressible finite volume solver are compared between three different shapes of impinging plates: Flat, Concave and Convex plates. The remarkable result of this study proves that the stagnation Nusselt number in laminar range of Reynolds number based on the slot width is maximum in convex surface and is minimum in concave plate. These results refuse the previous data in literature stating the amount of the stagnation Nusselt number is greater in concave surface related to flat plate configuration.Keywords: Concave, Convex, Heat transfer, Impinging jet, Laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3019757 Experimental Study and Analysis of Parabolic trough Collector with Various Reflectors
Authors: Avadhesh Yadav, Manoj Kumar, Balram
Abstract:
A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed For Aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than Aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using Aluminum sheet as reflector compared to Aluminum foil as reflector is 18.98% more.
Keywords: Parabolic trough collector, Reflectors, Air flow rates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4998756 Application the Queuing Theory in the Warehouse Optimization
Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova
Abstract:
The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.
Keywords: Queuing theory, logistics system, mathematical methods, warehouse optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6585755 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia
Authors: Erika Ruíz, Luis Amaya, Diego Carreño
Abstract:
The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).
Keywords: Location routing problem, logistic, mining collection, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798754 The Policy Improvement for Developing OTOP under the Context of Changing into ASEAN Economic Community (AEC)
Authors: Kawinphat Lertpongmanee
Abstract:
The development of One Tambon One Product (OTOP) became the policy of the government in 1997 after the former Prime Minister had been in power. The strategy of sections is currently set for the policy. OTOP has become the part of the way of community lives around the country. OTOP may be developed under changing into ASEAN economic community in 2015 because of the flow of capitals, productions, and many workers in the region. All sectors are improved for the change. The purposes of study were to study the strength and weakness of the OTOP-creating process via its policy and to lead to the strategy to be able to apply before changing. The methodology is qualitative to study its policy including document and to interview experienced persons. The findings showed that the effort of improvement of all sectors obviously involves with OTOP development. Particularly, the strategic administration of OTOP is in every level of the state, central sector, region, and community.
Keywords: ASEAN Economic Community – AEC, One Tambon One Product – OTOP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595753 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.
Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276752 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles
Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien
Abstract:
ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.
Keywords: Aerodynamic lens AL, divergent nozzle DN, ANSYS Fluent, Lagrange approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008751 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes
Authors: M. J. San José, S. Alvarez, R. López
Abstract:
In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.
Keywords: Biomass wastes, thermal combustion, conical spouted beds, vineyard wastes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743750 Separation of Dissolved Gases from Water for a Portable Underwater Breathing
Authors: Pil Woo Heo, In Sub Park
Abstract:
Water contains oxygen which may make a human breathe under water like a fish. Centrifugal separator can separate dissolved gases from water. Carrier solution can increase the separation of dissolved oxygen from water. But, to develop an breathing device for a human under water, the enhancement of separation of dissolved gases including oxygen and portable devices which have dc battery based device and proper size are needed. In this study, we set up experimental device for analyzing separation characteristics of dissolved gases including oxygen from water using a battery based portable vacuum pump. We characterized vacuum state, flow rate of separation of dissolved gases and oxygen concentration which were influenced by the manufactured vacuum pump.
Keywords: Portable, breathing, water, separation, battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103749 The Complementarities of Multi-Lateralism, Andregionalism and Income Convergence: ASEAN and SAARC
Authors: Kankesu Jayanthakumaran, Shao-Wei Lee
Abstract:
This paper proposes the hypothesis that multilateralism and regionalism are complementary, and that regional income convergence is likely with a like minded and committed regionalism that often has links geographically and culturally. The association between international trade, income per capita, and regional income convergence in founder members of ASEAN and SAARC, is explored by applying the Lumsdaine, and Papell approach. The causal relationships between the above variables are also studied in respective trade blocs by using Granger causality tests. The conclusion is that global reforms have had a greater impact on increasing trade for both trade blocs and induced convergence only in ASEAN-5 countries. The experience of ASEAN countries shows a two-way causal relationship between the flow from trade to regional income convergence, and vice versa. There is no evidence in SAARC countries for income convergence and causality.
Keywords: ASEAN-5, SAARC-5, trade liberalisation, incomeconvergence, structural breaks and causality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217748 Predicting Dispersion Coefficient in Free-Flowing Zones of Rivers by Genetic Programming
Authors: Rajeev Ranjan Sahay
Abstract:
Transient storage zones along the flow paths of rivers have great influence on the dispersion of pollutants that are either accidentally or otherwise led into them. The speed with which these pollution clouds get transported and dispersed downstream is, to a large extent, explained by the longitudinal dispersion coefficients in the free-flowing zones of rivers (Kf). In the present work, a new empirical expression for Kf has been derived employing genetic programming (GP) on published dispersion data. The proposed expression uses few hydraulic and geometric characteristics of a river that are readily available to field engineers. Based on various performance indices, the proposed expression is found superior to other existing expression for Kf.
Keywords: Dispersion, parameter estimation, rivers, transient pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726747 Design and Economical Performance of Gray Water Treatment Plant in Rural Region
Authors: Bhausaheb L. Pangarkar, Saroj B. Parjane, M.G. Sane
Abstract:
In India, the quarrel between the budding human populace and the planet-s unchanging supply of freshwater and falling water tables has strained attention the reuse of gray water as an alternative water resource in rural development. This paper present the finest design of laboratory scale gray water treatment plant, which is a combination of natural and physical operations such as primary settling with cascaded water flow, aeration, agitation and filtration, hence called as hybrid treatment process. The economical performance of the plant for treatment of bathrooms, basins and laundries gray water showed in terms of deduction competency of water pollutants such as COD (83%), TDS (70%), TSS (83%), total hardness (50%), oil and grease (97%), anions (46%) and cations (49%). Hence, this technology could be a good alternative to treat gray water in residential rural area.Keywords: Gray water treatment plant, gray water, naturaltechnology, pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4153746 Mathematical Modeling of Asphaltene Precipitation: A Review
Authors: Josefina Barnachea Janier, Radzuan B. Razali, Afza Shafie, Brahim Belhaouari Samir
Abstract:
In the Enhanced Oil Recovery (EOR) method, use of Carbon dioxide flooding whereby CO2 is injected into an oil reservoir to increase output when extracting oil resulted significant recovery worldwide. The carbon dioxide function as a pressurizing agent when mixed into the underground crude oil will reduce its viscosity and will enable a rapid oil flow. Despite the CO2’s advantage in the oil recovery, it may result to asphaltene precipitation a problem that will cause the reduction of oil produced from oil wells. In severe cases, asphaltene precipitation can cause costly blockages in oil pipes and machinery. This paper presents reviews of several studies done on mathematical modeling of asphaltene precipitation. The synthesized result from several researches done on this topic can be used as guide in order to better understand asphaltene precipitation. Likewise, this can be used as initial reference for students, and new researchers doing study on asphaltene precipitation.
Keywords: Asphaltene precipitation, crude oil, carbon dioxide flooding, enhanced oil recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4006745 Methanol Concentration Sensitive SWCNT/Nafion Composites
Authors: Kyongsoo Lee, , Seong-Il Kim, Byeong-Kwon Ju
Abstract:
An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system.Keywords: methanol concentration, SWCNT, nafion composites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935744 Treatment of Petroleum Refinery Wastewater by using UASB Reactors
Authors: H.A. Gasim, S.R.M. Kutty, M.H. Isa, M.P.M. Isa
Abstract:
Petroleum refineries discharged large amount of wastewater -during the refining process- that contains hazardous constituents that is hard to degrade. Anaerobic treatment process is well known as an efficient method to degrade high strength wastewaters. Up-flow Anaerobic Sludge Blanker (UASB) is a common process used for various wastewater treatments. Two UASB reactors were set up and operated in parallel to evaluate the treatment efficiency of petroleum refinery wastewater. In this study four organic volumetric loading rates were applied (i.e. 0.58, 0.89, 1.21 and 2.34 kg/m3·d), two loads to each reactor. Each load was applied for a period of 60 days for the reactor to acclimatize and reach steady state, and then the second load applied. The chemical oxygen demand (COD) removals were satisfactory with the removal efficiencies at the loadings applied were 78, 82, 83 and 81 % respectively.Keywords: Petroleum refinery wastewater, anaerobic treatment, UASB, organic volumetric loading rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520743 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method
Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi
Abstract:
The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.
Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892