Search results for: sensor data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7926

Search results for: sensor data

6426 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
6425 Investigation of Maritime Accidents with Exploratory Data Analysis in the Strait of Çanakkale (Dardanelles)

Authors: Gizem Kodak

Abstract:

The Strait of Çanakkale (Dardanelles), together with the Strait of Istanbul and the Sea of Marmara, form the Turkish Straits System. In other words, the Strait of Çanakkale is the southern gate of the system that connects the Black Sea countries with the other countries of the world. Due to the heavy maritime traffic, it is important to scientifically examine the accident characteristics in the region. In particular, the results indicated by the descriptive statistics are of critical importance in order to strengthen the safety of navigation. At this point, exploratory data analysis offers strategic outputs in terms of defining the problem and knowing the strengths and weaknesses against possible accident risk. The study aims to determine the accident characteristics in the Strait of Çanakkale with temporal and spatial analysis of historical data, using Exploratory Data Analysis (EDA) as the research method. The study's results will reveal the general characteristics of maritime accidents in the region and form the infrastructure for future studies. Therefore, the text provides a clear description of the research goals and methodology, and the study's contributions are well-defined.

Keywords: Maritime Accidents, EDA, Strait of Çanakkale, navigational safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130
6424 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical generic sync middleware of low maintenance and operation costs is most wanted. To this demand, this paper presented a generic sync middleware system (GSMS), which has been developed, applied and optimized since 2006, holding the principles or advantages that it must be SyncML-compliant and transparent to data application layer logic without referring to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence of low cost. Regarding these hard commitments of developing GSMS, in this paper we stressed the significant optimization breakthrough of GSMS sync delay being well below a fraction of millisecond per record sync. A series of ultimate tests with GSMS sync performance were conducted for a persuasive example, in which the source relational database underwent a broad range of write loads (from one thousand to one million intensive writes within a few minutes). All these tests showed that the performance of GSMS is competent and smooth even under ultimate write loads.

Keywords: Heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454
6423 SEM Image Classification Using CNN Architectures

Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198
6422 Data and Control Flow Analysis of VDMµ Specifications

Authors: Mubina Nazmeen, Iram Rubab

Abstract:

Formal Specification languages are being widely used for system specification and testing. Highly critical systems such as real time systems, avionics, and medical systems are represented using Formal specification languages. Formal specifications based testing is mostly performed using black box testing approaches thus testing only the set of inputs and outputs of the system. The formal specification language such as VDMµ can be used for white box testing as they provide enough constructs as any other high level programming language. In this work, we perform data and control flow analysis of VDMµ class specifications. The proposed work is discussed with an example of SavingAccount.

Keywords: VDM-SL, VDMµ, data flow graph, control flowgraph, testing, formal specification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4377
6421 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
6420 A Specification-Based Approach for Retrieval of Reusable Business Component for Software Reuse

Authors: Meng Fanchao, Zhan Dechen, Xu Xiaofei

Abstract:

Software reuse can be considered as the most realistic and promising way to improve software engineering productivity and quality. Automated assistance for software reuse involves the representation, classification, retrieval and adaptation of components. The representation and retrieval of components are important to software reuse in Component-Based on Software Development (CBSD). However, current industrial component models mainly focus on the implement techniques and ignore the semantic information about component, so it is difficult to retrieve the components that satisfy user-s requirements. This paper presents a method of business component retrieval based on specification matching to solve the software reuse of enterprise information system. First, a business component model oriented reuse is proposed. In our model, the business data type is represented as sign data type based on XML, which can express the variable business data type that can describe the variety of business operations. Based on this model, we propose specification match relationships in two levels: business operation level and business component level. In business operation level, we use input business data types, output business data types and the taxonomy of business operations evaluate the similarity between business operations. In the business component level, we propose five specification matches between business components. To retrieval reusable business components, we propose the measure of similarity degrees to calculate the similarities between business components. Finally, a business component retrieval command like SQL is proposed to help user to retrieve approximate business components from component repository.

Keywords: Business component, business operation, business data type, specification matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
6419 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using α cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: Multi-component DEA, fuzzy multi-component DEA, fuzzy resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
6418 Finding an Optimized Discriminate Function for Internet Application Recognition

Authors: E. Khorram, S.M. Mirzababaei

Abstract:

Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
6417 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: Tool condition monitoring, tool wear prediction, milling operation, flute tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
6416 Semantic Spatial Objects Data Structure for Spatial Access Method

Authors: Kalum Priyanath Udagepola, Zuo Decheng, Wu Zhibo, Yang Xiaozong

Abstract:

Modern spatial database management systems require a unique Spatial Access Method (SAM) in order solve complex spatial quires efficiently. In this case the spatial data structure takes a prominent place in the SAM. Inadequate data structure leads forming poor algorithmic choices and forging deficient understandings of algorithm behavior on the spatial database. A key step in developing a better semantic spatial object data structure is to quantify the performance effects of semantic and outlier detections that are not reflected in the previous tree structures (R-Tree and its variants). This paper explores a novel SSRO-Tree on SAM to the Topo-Semantic approach. The paper shows how to identify and handle the semantic spatial objects with outlier objects during page overflow/underflow, using gain/loss metrics. We introduce a new SSRO-Tree algorithm which facilitates the achievement of better performance in practice over algorithms that are superior in the R*-Tree and RO-Tree by considering selection queries.

Keywords: Outlier, semantic spatial object, spatial objects, SSRO-Tree, topo-semantic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
6415 Q-Map: Clinical Concept Mining from Clinical Documents

Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala

Abstract:

Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.

Keywords: Information retrieval (IR), unified medical language system (UMLS), Syntax Based Analysis, natural language processing (NLP), medical informatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
6414 Characterization Non-Deterministic of Optical Channels

Authors: V. A. C. Vale, E. T. L. Cöuras Ford

Abstract:

The use of optical technologies in the telecommunications has been increasing due to its ability to transmit large amounts of data over long distances. However, as in all systems of data transmission, optical communication channels suffer from undesirable and non-deterministic effects, being essential to know the same. Thus, this research allows the assessment of these effects, as well as their characterization and beneficial uses of these effects.

Keywords: Optical communication, optical fiber, non-deterministic effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
6413 Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data

Authors: Said M. Easa, Shinya Kikuchi

Abstract:

When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.

Keywords: Optimization, parameters, data, reverse, spreadsheet, vertical curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
6412 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis

Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht

Abstract:

With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.

Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
6411 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: Cosmetic products, methylparaben, molecularly imprinted polymer, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
6410 Application of the Data Distribution Service for Flexible Manufacturing Automation

Authors: Marco Ryll, Svetan Ratchev

Abstract:

This paper discusses the applicability of the Data Distribution Service (DDS) for the development of automated and modular manufacturing systems which require a flexible and robust communication infrastructure. DDS is an emergent standard for datacentric publish/subscribe middleware systems that provides an infrastructure for platform-independent many-to-many communication. It particularly addresses the needs of real-time systems that require deterministic data transfer, have low memory footprints and high robustness requirements. After an overview of the standard, several aspects of DDS are related to current challenges for the development of modern manufacturing systems with distributed architectures. Finally, an example application is presented based on a modular active fixturing system to illustrate the described aspects.

Keywords: Flexible Manufacturing, Publish/Subscribe, Plug & Produce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
6409 Impacts of Building Design Factors on Auckland School Energy Consumptions

Authors: Bin Su

Abstract:

This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.

Keywords: Building energy efficiency, Building thermal design, Building thermal performance, School building design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
6408 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector

Authors: Saif Ul Haq

Abstract:

The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.

Keywords: Construction industry, quality considerations, quality function deployment, safety considerations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899
6407 Tourism Satellite Account: Approach and Information System Development

Authors: Pappas Theodoros, Michael Diakomichalis

Abstract:

Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors, and which should be observed and measured to reveal the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article presents a system of TSA information that encompasses all functions TSA functions, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer new insights for the development and implementation of TSA.

Keywords: Tourism Satellite Account, information system, data-based tourist account.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59
6406 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
6405 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
6404 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure

Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin

Abstract:

Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.

Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
6403 Intrusion Detection based on Distance Combination

Authors: Joffroy Beauquier, Yongjie Hu

Abstract:

The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.

Keywords: Intrusion detection, combination, distance, Pearson correlation coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
6402 Fault Tolerance in Distributed Database Systems

Authors: M. A. Adeboyejo, O. O. Adeosun

Abstract:

Pioneer networked systems assume that connections are reliable, and a faulty operation will be considered in case of losing a connection. Transient connections are typical of mobile devices. Areas of application of data sharing system such as these, lead to the conclusion that network connections may not always be reliable, and that the conventional approaches can be improved. Nigerian commercial banking industry is a critical system whose operation is increasingly becoming dependent on information technology (IT) driven information system. The proposed solution to this problem makes use of a hierarchically clustered network structure which we selected to reflect (as much as possible) the typical organizational structure of the Nigerian commercial banks. Representative transactions such as data updates and replication of the results of such updates were used to simulate the proposed model to show its applicability.

Keywords: Dependability, reliability, data redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
6401 Normalization Discriminant Independent Component Analysis

Authors: Liew Yee Ping, Pang Ying Han, Lau Siong Hoe, Ooi Shih Yin, Housam Khalifa Bashier Babiker

Abstract:

In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.

Keywords: Face recognition, small sample size, regularization, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
6400 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks

Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat

Abstract:

Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.

Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
6399 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
6398 A Study on the Cloud Simulation with a Network Topology Generator

Authors: Jun-Kwon Jung, Sung-Min Jung, Tae-Kyung Kim, Tai-Myoung Chung

Abstract:

CloudSim is a useful tool to simulate the cloud environment. It shows the service availability, the power consumption, and the network traffic of services on the cloud environment. Moreover, it supports to calculate a network communication delay through a network topology data easily. CloudSim allows inputting a file of topology data, but it does not provide any generating process. Thus, it needs the file of topology data generated from some other tools. The BRITE is typical network topology generator. Also, it supports various type of topology generating algorithms. If CloudSim can include the BRITE, network simulation for clouds is easier than existing version. This paper shows the potential of connection between BRITE and CloudSim. Also, it proposes the direction to link between them.

Keywords: Cloud, simulation, topology, BRITE, network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778
6397 Role of Credit on Production Efficiency of Farming Sector in Pakistan(A Data Envelopment Analysis)

Authors: Saima Ayaz, Zakir Hussain, Maqbool Hussain Sial

Abstract:

The study identified the sources of production inefficiency of the farming sector in district Faisalabad in the Punjab province of Pakistan. Data Envelopment Analysis (DEA) technique was utilized at farm level survey data of 300 farmers for the year 2009. The overall mean efficiency score was 0.78 indicating 22 percent inefficiency of the sample farmers. Computed efficiency scores were then regressed on farm specific variables using Tobit regression analysis. Farming experience, education, access to farming credit, herd size and number of cultivation practices showed constructive and significant effect on the farmer-s technical efficiency.

Keywords: Agricultural credit, DEA, Technical efficiency, Tobit analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351