Search results for: optimization techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4120

Search results for: optimization techniques

2620 Hybrid Intelligent Intrusion Detection System

Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed

Abstract:

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
2619 Concept for Knowledge out of Sri Lankan Non-State Sector: Performances of Higher Educational Institutes and Successes of Its Sector

Authors: S. Jeyarajan

Abstract:

Concept of knowledge is discovered from conducted study for successive Competition in Sri Lankan Non-State Higher Educational Institutes. The Concept discovered out of collected Knowledge Management Practices from Emerald inside likewise reputed literatures and of Non-State Higher Educational sector. A test is conducted to reveal existences and its reason behind of these collected practices in Sri Lankan Non-State Higher Education Institutes. Further, unavailability of such study and uncertain on number of participants for data collection in the Sri Lankan context contributed selection of research method as qualitative method, which used attributes of Delphi Method to manage those likewise uncertainty. Data are collected under Dramaturgical Method, which contributes efficient usage of the Delphi method. Grounded theory is selected as data analysis techniques, which is conducted in intermixed discourse to manage different perspectives of data that are collected systematically through perspective and modified snowball sampling techniques. Data are then analysed using Grounded Theory Development Techniques in Intermix discourses to manage differences in Data. Consequently, Agreement in the results of Grounded theories and of finding in the Foreign Study is discovered in the analysis whereas present study conducted as Qualitative Research and The Foreign Study conducted as Quantitative Research. As such, the Present study widens the discovery in the Foreign Study. Further, having discovered reason behind of the existences, the Present result shows Concept for Knowledge from Sri Lankan Non-State sector to manage higher educational Institutes in successful manner.

Keywords: Adherence of snowball sampling into perspective sampling, Delphi method in qualitative method, grounded theory development in intermix discourses of analysis, knowledge management for success of higher educational institutes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
2618 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods

Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen

Abstract:

Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.

Keywords: Accommodation establishments, human resource management, MOORA, multi criteria decision making, SWARA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
2617 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
2616 Compression and Filtering of Random Signals under Constraint of Variable Memory

Authors: Anatoli Torokhti, Stan Miklavcic

Abstract:

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
2615 Regularization of the Trajectories of Dynamical Systems by Adjusting Parameters

Authors: Helle Hein, Ülo Lepik

Abstract:

A gradient learning method to regulate the trajectories of some nonlinear chaotic systems is proposed. The method is motivated by the gradient descent learning algorithms for neural networks. It is based on two systems: dynamic optimization system and system for finding sensitivities. Numerical results of several examples are presented, which convincingly illustrate the efficiency of the method.

Keywords: Chaos, Dynamical Systems, Learning, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
2614 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining

Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar

Abstract:

The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.

Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
2613 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
2612 Application of Data Mining Tools to Predicate Completion Time of a Project

Authors: Seyed Hossein Iranmanesh, Zahra Mokhtari

Abstract:

Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.

Keywords: Data Mining Techniques, Earned Duration Method, Earned Value, Estimate At Completion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
2611 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling

Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis

Abstract:

This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.

Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
2610 Collaborative Planning and Forecasting

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Collaborative Planning and Forecasting is an innovative and systematic approach towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate Collaborative Planning and Forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.

Keywords: Information transfer, Forecasting, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
2609 A Design Framework for Event Recommendation in Novice Low-Literacy Communities

Authors: Yimeng Deng, Klarissa T.T. Chang

Abstract:

The proliferation of user-generated content (UGC) results in huge opportunities to explore event patterns. However, existing event recommendation systems primarily focus on advanced information technology users. Little work has been done to address novice and low-literacy users. The next billion users providing and consuming UGC are likely to include communities from developing countries who are ready to use affordable technologies for subsistence goals. Therefore, we propose a design framework for providing event recommendations to address the needs of such users. Grounded in information integration theory (IIT), our framework advocates that effective event recommendation is supported by systems capable of (1) reliable information gathering through structured user input, (2) accurate sense making through spatial-temporal analytics, and (3) intuitive information dissemination through interactive visualization techniques. A mobile pest management application is developed as an instantiation of the design framework. Our preliminary study suggests a set of design principles for novice and low-literacy users.

Keywords: Event recommendation, iconic interface, information integration, spatial-temporal clustering, user-generated content, visualization techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
2608 Real-time Target Tracking Using a Pan and Tilt Platform

Authors: Moulay A. Akhloufi

Abstract:

In recent years, we see an increase of interest for efficient tracking systems in surveillance applications. Many of the proposed techniques are designed for static cameras environments. When the camera is moving, tracking moving objects become more difficult and many techniques fail to detect and track the desired targets. The problem becomes more complex when we want to track a specific object in real-time using a moving Pan and Tilt camera system to keep the target within the image. This type of tracking is of high importance in surveillance applications. When a target is detected at a certain zone, the possibility of automatically tracking it continuously and keeping it within the image until action is taken is very important for security personnel working in very sensitive sites. This work presents a real-time tracking system permitting the detection and continuous tracking of targets using a Pan and Tilt camera platform. A novel and efficient approach for dealing with occlusions is presented. Also a new intelligent forget factor is introduced in order to take into account target shape variations and avoid learning non desired objects. Tests conducted in outdoor operational scenarios show the efficiency and robustness of the proposed approach.

Keywords: Tracking, surveillance, target detection, Pan and tilt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2607 Harmonic Analysis and Performance Improvement of a Wind Energy Conversions System with Double Output Induction Generator

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Wind turbines with double output induction generators can operate at variable speed permitting conversion efficiency maximization over a wide range of wind velocities. This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shafts speed. A periodic transient state analysis of DOIG equipped with two converters is carried out using a hybrid induction machine model. This paper simulates the harmonic content of waveforms in various points of drive at different speeds, based on the hybrid model (dqabc). Then the sinusoidal and trapezoidal pulse-width–modulation control techniques are used in order to improve the power factor of the machine and to weaken the injected low order harmonics to the supply. Based on the frequency spectrum, total harmonics distortion, distortion factor and power factor. Finally advantages of sinusoidal and trapezoidal pulse width modulation techniques are compared.

Keywords: DOIG, Harmonic Analysis, Wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2606 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency

Authors: Sandesh Achar

Abstract:

Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
2605 Role of Feedbacks in Simulation-Based Learning

Authors: Usman Ghani

Abstract:

Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.

Keywords: Simulation, feedback, training, hands-on, labs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2604 Cluster Algorithm for Genetic Diversity

Authors: Manpreet Singh, Keerat Kaur, Bhavdeep Singh

Abstract:

With the hardware technology advancing, the cost of storing is decreasing. Thus there is an urgent need for new techniques and tools that can intelligently and automatically assist us in transferring this data into useful knowledge. Different techniques of data mining are developed which are helpful for handling these large size databases [7]. Data mining is also finding its role in the field of biotechnology. Pedigree means the associated ancestry of a crop variety. Genetic diversity is the variation in the genetic composition of individuals within or among species. Genetic diversity depends upon the pedigree information of the varieties. Parents at lower hierarchic levels have more weightage for predicting genetic diversity as compared to the upper hierarchic levels. The weightage decreases as the level increases. For crossbreeding, the two varieties should be more and more genetically diverse so as to incorporate the useful characters of the two varieties in the newly developed variety. This paper discusses the searching and analyzing of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the genetic diversity between the selected wheat varieties. Cluster analysis technique is used for retrieving the results.

Keywords: Genetic diversity, pedigree, nutrients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
2603 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an  enormous number of applications, cyber-threats have significantly  increased accordingly. Thus, accurate detection of malicious traffic in  a timely manner is a critical concern in today’s Internet for security.  One approach for intrusion detection is to use Machine Learning (ML)  techniques. Several methods based on ML algorithms have been  introduced over the past years, but they are largely limited in terms of  detection accuracy and/or time and space complexity to run. In this  work, we present a novel method for intrusion detection that  incorporates a set of supervised learning algorithms. The proposed  technique provides high accuracy and outperforms existing techniques  that simply utilizes a single learning method. In addition, our  technique relies on partial flow information (rather than full  information) for detection, and thus, it is light-weight and desirable for  online operations with the property of early identification. With the  mid-Atlantic CCDC intrusion dataset publicly available, we show that  our proposed technique yields a high degree of detection rate over 99%  with a very low false alarm rate (0.4%). 

 

Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
2602 Removal of Textile Dye from Industrial Wastewater by Natural and Modified Diatomite

Authors: Hakim Aguedal, Abdelkader Iddou, Abdallah Aziz, Djillali Reda Merouani, Ferhat Bensaleh, Saleh Bensadek

Abstract:

The textile industry produces high amount of colored effluent each year. The management or treatment of these discharges depends on the applied techniques. Adsorption is one of wastewater treatment techniques destined to treat this kind of pollution, and the performance and efficiency predominantly depend on the nature of the adsorbent used. Therefore, scientific research is directed towards the development of new materials using different physical and chemical treatments to improve their adsorption capacities. In the same perspective, we looked at the effect of the heat treatment on the effectiveness of diatomite, which is found in abundance in Algeria. The textile dye Orange Bezaktiv (SRL-150) which is used as organic pollutants in this study is provided by the textile company SOITEXHAM in Oran city (west Algeria). The effect of different physicochemical parameters on the adsorption of SRL-150 on natural and modified diatomite is studied, and the results of the kinetics and adsorption isotherms were modeled.

Keywords: Wastewater treatment, diatomite, adsorption, dye pollution, kinetic, Isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2601 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
2600 Research on IBR-Driven Distributed Collaborative Visualization System

Authors: Yin Runmin, Song Changfeng

Abstract:

Image-based Rendering(IBR) techniques recently reached in broad fields which leads to a critical challenge to build up IBR-Driven visualization platform where meets requirement of high performance, large bounds of distributed visualization resource aggregation and concentration, multiple operators deploying and CSCW design employing. This paper presents an unique IBR-based visualization dataflow model refer to specific characters of IBR techniques and then discusses prominent feature of IBR-Driven distributed collaborative visualization (DCV) system before finally proposing an novel prototype. The prototype provides a well-defined three level modules especially work as Central Visualization Server, Local Proxy Server and Visualization Aid Environment, by which data and control for collaboration move through them followed the previous dataflow model. With aid of this triple hierarchy architecture of that, IBR oriented application construction turns to be easy. The employed augmented collaboration strategy not only achieve convenient multiple users synchronous control and stable processing management, but also is extendable and scalable.

Keywords: Image-Based Rendering, Distributed CollaborativeVisualization, Computer Supported Cooperative Work, Model andSimulation, Modular Visualization Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
2599 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
2598 Web Page Watermarking: XML files using Synonyms and Acronyms

Authors: Nighat Mir, Sayed Afaq Hussain

Abstract:

Advent enhancements in the field of computing have increased massive use of web based electronic documents. Current Copyright protection laws are inadequate to prove the ownership for electronic documents and do not provide strong features against copying and manipulating information from the web. This has opened many channels for securing information and significant evolutions have been made in the area of information security. Digital Watermarking has developed into a very dynamic area of research and has addressed challenging issues for digital content. Watermarking can be visible (logos or signatures) and invisible (encoding and decoding). Many visible watermarking techniques have been studied for text documents but there are very few for web based text. XML files are used to trade information on the internet and contain important information. In this paper, two invisible watermarking techniques using Synonyms and Acronyms are proposed for XML files to prove the intellectual ownership and to achieve the security. Analysis is made for different attacks and amount of capacity to be embedded in the XML file is also noticed. A comparative analysis for capacity is also made for both methods. The system has been implemented using C# language and all tests are made practically to get the results.

Keywords: Watermarking, Extensible Markup Language (XML), Synonyms, Acronyms, Copyright protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
2597 Identification of Author and Reviewer from Single and Double Blind Paper

Authors: Jatinderkumar R. Saini, Nikita R. Sonthalia, Khushbu A. Dodiya

Abstract:

Research leads to the development of science and technology and hence it leads to the betterment of humankind also. Journals and Conferences provide a platform to receive large number of research papers for publications and presentations before the expert and peer-level scientific community. In order to assure quality of such papers, they are also sent to reviewers for their comments. In order to maintain good ethical standards, the research papers are sent to reviewers in such a way authors and reviewers do not know each other’s identity. This technique is called Double-blind Review Process. It is called Single-blind Review Process, if identity of any one party, generally authors’, is disclosed to the other. This paper presents the techniques by which identity of author as well as reviewer could be found even through Double-blind Review process. It is proposed that the characteristics and techniques presented here will help journals and conferences in assuring intentional or un-intentional disclosure of identity revealing information by the either party. 

Keywords: Author, Conference, Double Blind Paper, Journal, Reviewer, Single Blind Paper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
2596 Application of CPN Tools for Simulation and Analysis of Bandwidth Allocation

Authors: Julija Asmuss, Gunars Lauks, Viktors Zagorskis

Abstract:

We consider the problem of bandwidth allocation in a substrate network as an optimization problem for the aggregate utility of multiple applications with diverse requirements and describe a simulation scheme for dynamically adaptive bandwidth allocation protocols. The proposed simulation model based on Coloured Petri Nets (CPN) is realized using CPN Tools.

Keywords: Bandwidth Allocation Problem, Coloured Petri Nets, CPN Tools, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
2595 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis

Authors: V. Venkatachalam, S. Selvan

Abstract:

The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.

Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2594 Authentication and Data Hiding Using a Reversible ROI-based Watermarking Scheme for DICOM Images

Authors: Osamah M. Al-Qershi, Khoo Bee Ee

Abstract:

In recent years image watermarking has become an important research area in data security, confidentiality and image integrity. Many watermarking techniques were proposed for medical images. However, medical images, unlike most of images, require extreme care when embedding additional data within them because the additional information must not affect the image quality and readability. Also the medical records, electronic or not, are linked to the medical secrecy, for that reason, the records must be confidential. To fulfill those requirements, this paper presents a lossless watermarking scheme for DICOM images. The proposed a fragile scheme combines two reversible techniques based on difference expansion for patient's data hiding and protecting the region of interest (ROI) with tamper detection and recovery capability. Patient's data are embedded into ROI, while recovery data are embedded into region of non-interest (RONI). The experimental results show that the original image can be exactly extracted from the watermarked one in case of no tampering. In case of tampered ROI, tampered area can be localized and recovered with a high quality version of the original area.

Keywords: DICOM, reversible, ROI-based, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
2593 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
2592 Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Authors: Pavel Pořízka, David Prochazka, Karel Novotný, Ota Samek, ZdeněkPilát, Klára Procházková, and Jozef Kaiser

Abstract:

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Keywords: Laser-Induced Breakdown Spectroscopy, Raman Spectroscopy, Algae, Algal strains, Bioremediation, Biofuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
2591 Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Authors: M. Abdul-Rani, K. K. Chong, A. F. M. Hani, Y. B. Yap, A. Jamil

Abstract:

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Keywords: Imaging, Laser Triangulation, Structured Light, Volume Determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509