Search results for: Machine tools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2323

Search results for: Machine tools

853 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
852 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: Document processing, framework, formal definition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636
851 An Approach to Concerns and Aspects Mining for Web Applications

Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini

Abstract:

Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.

Keywords: Aspect Mining, Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
850 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
849 Student and Group Activity Level Assessment in the ELARS Recommender System

Authors: Martina Holenko Dlab, Natasa Hoic-Bozic

Abstract:

This paper presents an original approach to student and group activity level assessment that relies on certainty factors theory. Activity level is used to represent quantity and continuity of student’s contributions in individual and collaborative e‑learning activities (e‑tivities) and is calculated to assist teachers in assessing quantitative aspects of student's achievements. Calculated activity levels are also used to raise awareness and provide recommendations during the learning process. The proposed approach was implemented within the educational recommender system ELARS and validated using data obtained from e‑tivity realized during a blended learning course. The results showed that the proposed approach can be used to estimate activity level in the context of e-tivities realized using Web 2.0 tools as well as to facilitate the assessment of quantitative aspect of students’ participation in e‑tivities.

Keywords: Assessment, ELARS, e-learning, recommender systems, student model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
848 Barriers and Strategies for Effective Communication between Parents and Children in the Family

Authors: Sadhana Ghnayiem

Abstract:

This article deals with the issue of effective communication between parents and children and its impact on the family in general and on the child in particular. The aim of this article is to provide information to parents, students, anyone interested in family communication between parents and children, and to provide them with tools to deal with barriers to communication in the family unit. The article presented a literature review of the importance of effective communication in the family, the definition of the concept of communication, and was a reference to factors and barriers in communication between parents and children leading to conflict destructive to the extent that barriers to effective communication in the family unit. At the end of the article, strategies were introduced to motivate children to behave appropriately, and to equip parents best to foster the healthy development of their children when they can create an atmosphere of effective communication. From the literature review, it's found that effective communication between parents and children prevents problematic behavior and helps children understand how to communicate effectively with others. Communication between parents and children is the cornerstone of a happy family life and is the basis for positive interactions between parents and children and increases self-esteem in children.

Keywords: Children, communication, conflict, family.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4058
847 Student Satisfaction Data for Work Based Learners

Authors: Rosie Borup, Hanifa Shah

Abstract:

This paper aims to describe how student satisfaction is measured for work-based learners as these are non-traditional learners, conducting academic learning in the workplace, typically their curricula have a high degree of negotiation, and whose motivations are directly related to their employers- needs, as well as their own career ambitions. We argue that while increasing WBL participation, and use of SSD are both accepted as being of strategic importance to the HE agenda, the use of WBL SSD is rarely examined, and lessons can be learned from the comparison of SSD from a range of WBL programmes, and increased visibility of this type of data will provide insight into ways to improve and develop this type of delivery. The key themes that emerged from the analysis of the interview data were: learners profiles and needs, employers drivers, academic staff drivers, organizational approach, tools for collecting data and visibility of findings. The paper concludes with observations on best practice in the collection, analysis and use of WBL SSD, thus offering recommendations for both academic managers and practitioners.

Keywords: Student satisfaction data, work based learning, employer engagement, NSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
846 Damping Power System Oscillations Improvement by FACTS Devices: A Comparison between SSSC and STATCOM

Authors: J. Barati, A. Saeedian, S. S. Mortazavi

Abstract:

The main objective of this paper is a comparative investigate in enhancement of damping power system oscillation via coordinated design of the power system stabilizer (PSS) and static synchronous series compensator (SSSC) and static synchronous compensator (STATCOM). The design problem of FACTS-based stabilizers is formulated as a GA based optimization problem. In this paper eigenvalue analysis method is used on small signal stability of single machine infinite bus (SMIB) system installed with SSSC and STATCOM. The generator is equipped with a PSS. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. This aim is to enhance both rotor angle and power system stability. The eigenvalue analysis and non-linear simulation results are presented to show the effects of these FACTS-based stabilizers and reveal that SSSC exhibits the best effectiveness on damping power system oscillation.

Keywords: Power system stability, PSS, SSSC, STATCOM, Coordination, Optimization, Damping Oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4011
845 Islamic Banking: An Ultimate Source of Financial Inclusion

Authors: Tasawar Nawaz

Abstract:

Promotion of socioeconomic justice through redistribution of wealth is one of the most salient features of Islamic economic system. Islamic financial institutions known as Islamic banks are used to implement this in practice under the guidelines of Islamic Shariah law. Islamic banking systems strive to promote and achieve financial inclusion among the society by offering interest-free banking and risk-sharing financing solutions. Shariah-compliant micro finance is one of the most popular financial instruments used by Islamic banks to enhance access to finance. Benevolent loan (or Qard-al-Hassanah) is one of the popular financial tools used by the Islamic banks to promote financial inclusion. This aspect of Islamic banking is empirically examined in this paper with specific reference to firm’s resources, largely defined here as intellectual capital. The paper finds that Islamic banks promote financial inclusion by exploiting available resources especially, the human intellectual capital.

Keywords: Financial inclusion, intellectual capital, Qard-al-Hassanah, Islamic banking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
844 High Speed Bitwise Search for Digital Forensic System

Authors: Hyungkeun Jee, Jooyoung Lee, Dowon Hong

Abstract:

The most common forensic activity is searching a hard disk for string of data. Nowadays, investigators and analysts are increasingly experiencing large, even terabyte sized data sets when conducting digital investigations. Therefore consecutive searching can take weeks to complete successfully. There are two primary search methods: index-based search and bitwise search. Index-based searching is very fast after the initial indexing but initial indexing takes a long time. In this paper, we discuss a high speed bitwise search model for large-scale digital forensic investigations. We used pattern matching board, which is generally used for network security, to search for string and complex regular expressions. Our results indicate that in many cases, the use of pattern matching board can substantially increase the performance of digital forensic search tools.

Keywords: Digital forensics, search, regular expression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
843 Multi-Dimensional Concerns Mining for Web Applications via Concept-Analysis

Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini

Abstract:

Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.

Keywords: Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
842 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices

Authors: F. Djeffal, N. Lakhdar, T. Bendib

Abstract:

The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.

Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
841 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: Cloud computing, cloud monitoring, performance optimization, high availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
840 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
839 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552
838 Arabic Light Stemmer for Better Search Accuracy

Authors: Sahar Khedr, Dina Sayed, Ayman Hanafy

Abstract:

Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.

Keywords: Arabic data mining, Arabic Information extraction, Arabic Light stemmer, Arabic stemmer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
837 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

Authors: G. Zazzaro, F.M. Pisano, G. Romano

Abstract:

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.

Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597
836 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.

Keywords: Politics, machine learning, feature selection, LIWC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
835 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: Cannibalization, machine learning, online marketplace, revenue optimization, yield optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
834 DRE - A Quality Metric for Component based Software Products

Authors: K. S. Jasmine, R. Vasantha

Abstract:

The overriding goal of software engineering is to provide a high quality system, application or a product. To achieve this goal, software engineers must apply effective methods coupled with modern tools within the context of a mature software process [2]. In addition, it is also must to assure that high quality is realized. Although many quality measures can be collected at the project levels, the important measures are errors and defects. Deriving a quality measure for reusable components has proven to be challenging task now a days. The results obtained from the study are based on the empirical evidence of reuse practices, as emerged from the analysis of industrial projects. Both large and small companies, working in a variety of business domains, and using object-oriented and procedural development approaches contributed towards this study. This paper proposes a quality metric that provides benefit at both project and process level, namely defect removal efficiency (DRE).

Keywords: Software Reuse, Defect density, Reuse metrics, Defect Removal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
833 Analysis of Suitability of Online Assessment by Maintaining Critical Thinking

Authors: Mohamed Chabi, Mohammad Shahid Jamil, Mahmoud I Syam

Abstract:

The purpose of this study is to determine whether paper assessment especially in the subject mathematics will ever be completely replaced by online assessment using Learning Management System and Content Management System such as blackboard. Testing students has moved from the traditional scribbling and sketching on paper towards working online on a screen and keyboard. It is found that online assessment by using selective types of questions like multiple choices, true or false and final answer questions don’t reflect the actual understanding of students in solving the problems and teachers can’t determine the weakness points of students. In addition, it is showed that OBMCQs are a very good tool for self-assessment and when teachers are testing for knowledge and facts. But when it comes to the skills, OBMCQs are poor tools for measuring the ability to apply knowledge to complex math problem. 

Keywords: Paper assessment, online assessment, learning management system, content management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
832 Influence of Active Packaging on the Shelf Life of Apple-Black Currant Marmalade Candies

Authors: Sandra Muizniece-Brasava, Lija Dukalska, Solvita Kampuse, Irisa Murniece, Martins Sabovics, IlonaDabina-Bicka, Emils Kozlinskis, Svetlana Sarvi

Abstract:

The research object was apple-black currant marmalade candies. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of marmalade. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +20.0±1.0 °C. The physiochemical properties – weight losses, moisture content, hardness, aw, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

Keywords: Active packaging, marmalade candies, shelf life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
831 A User Study on the Adoption of Context-Aware Destination Mobile Applications

Authors: Shu-Lu Hsu, Fang-Yi Chu

Abstract:

With the advances in information and communications technology, mobile context-aware applications have become powerful marketing tools. In Apple online store, there are numerous mobile applications (APPs) developed for destination tour. This study investigated the determinants of adoption of context-aware APPs for destination tour services. A model is proposed based on Technology Acceptance Model and privacy concern theory. The model was empirically tested based on a sample of 259 users of a tourism APP published by Kaohsiung Tourism Bureau, Taiwan. The results showed that the fitness of the model is well and, among all the factors, the perceived usefulness and perceived ease of use have the most significant influences on the intention to adopt context-aware destination APPs. Finally, contrary to the findings of previous literature, the effect of privacy concern on the adoption intention of context-aware APP is insignificant.

Keywords: Mobile Application, Context-Aware, Privacy Concern, TAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
830 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: Relational Database, Functional Dependency, Automatic Normalization, Primary Key, Spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
829 Mindfulness and Employability: A Course on the Control of Stress during the Search for Work

Authors: O. Lasaga

Abstract:

Defining professional objectives and the search for work are some of the greatest stress factors for final year university students and recent graduates. To manage correctly the stress brought about by the uncertainty, confusion and frustration this process often generates, a course to control stress based on mindfulness has been designed and taught. This course provides tools based on relaxation, mindfulness and meditation that enable students to address personal and professional challenges in the transition to the job market, eliminating or easing the anxiety involved. The course is extremely practical and experiential, combining theory classes and practical classes of relaxation, meditation and mindfulness, group dynamics, reflection, application protocols and session integration. The evaluation of the courses highlighted on the one hand the high degree of satisfaction and, on the other, the usefulness for the students in becoming aware of stressful situations and how these affect them and learning new coping techniques that enable them to reach their goals more easily and with greater satisfaction and well-being.

Keywords: Employability, meditation, mindfulness, relaxation techniques, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
828 Innovation Policy and Development of Creative Industries: Case Study of Lithuanian Animation Industry

Authors: Tomas Mitkus, Vaida Nedzinskaitė-Mitkė

Abstract:

The objective of this study is to identify and explore how adequate is modern innovation support mechanism to developed creative industries. We argue that current development and support strategy for creative industries, although acknowledge high correlation between innovation and creativity, do not seek to improve conditions to promote systematic innovation development in the creative sector. Using the Lithuanian animation industry as a case study, this paper will examine innovation contribution to creativity and, for that matter, the competitiveness of animation enterprises. This paper proposes insights that contribute to theoretical and practical discussions on how creative profile companies build national and international competitiveness through innovations. The conclusions suggest that development of creative industries could greatly benefit if policymakers would implement tools that would encourage creative profile enterprises to invest in to development of innovation at a constant rate.

Keywords: Creative industries, animation, innovation, innovation policy, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
827 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

Authors: Walid M. Adel, Liang Guo-Zhu

Abstract:

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, master curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
826 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
825 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
824 Development of a Computer Vision System for the Blind and Visually Impaired Person

Authors: Roselyn A. Maaño

Abstract:

Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may results from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.

Keywords: Algorithms, Blind, Computer Vision, Embedded Systems, Image Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3607