Search results for: systematic errors.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 830

Search results for: systematic errors.

710 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model

Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady

Abstract:

The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.

Keywords: Axiomatic design, quality function deployment, systems engineering management, system development lifecycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
709 Students' Perceptions of the Value of the Elements of an Online Learning Environment: An Investigation of Discipline Differences

Authors: Stuart Palmer, Dale Holt

Abstract:

This paper presents a large scale, quantitative investigation of the impact of discipline differences on the student experience of using an online learning environment (OLE). Based on a representative sample of 2526 respondents, a number of significant differences in the mean rating by broad discipline area of the importance of, and satisfaction with, a range of elements of an OLE were found. Broadly speaking, the Arts and Science and Technology discipline areas reported the lowest importance and satisfaction ratings for the OLE, while the Health and Behavioural Sciences area was the most satisfied with the OLE. A number of specific, systematic discipline differences are reported and discussed. Compared to the observed significant differences in mean importance ratings, there were fewer significant differences in mean satisfaction ratings, and those that were observed were less systematic than for importance ratings.

Keywords: Discipline difference, learning management system, online learning environment, student evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
708 A Systematic Construction of Instability Bounds in LIS Networks

Authors: Dimitrios Koukopoulos

Abstract:

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Keywords: Parallel computing, network stability, adversarial queuing theory, greedy scheduling protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
707 A New Image Psychovisual Coding Quality Measurement based Region of Interest

Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf

Abstract:

To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.

Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
706 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
705 An Investigation into the Role of Market Beta in Asset Pricing: Evidence from the Romanian Stock Market

Authors: Ioan Popa, Radu Lupu, Cristiana Tudor

Abstract:

In this paper, we apply the FM methodology to the cross-section of Romanian-listed common stocks and investigate the explanatory power of market beta on the cross-section of commons stock returns from Bucharest Stock Exchange. Various assumptions are empirically tested, such us linearity, market efficiency, the “no systematic effect of non-beta risk" hypothesis or the positive expected risk-return trade-off hypothesis. We find that the Romanian stock market shows the same properties as the other emerging markets in terms of efficiency and significance of the linear riskreturn models. Our analysis included weekly returns from January 2002 until May 2010 and the portfolio formation, estimation and testing was performed in a rolling manner using 51 observations (one year) for each stage of the analysis.

Keywords: Bucharest Stock Exchange, Fama-Macbeth methodology, systematic risk, non-linear risk-return dependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
704 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee

Abstract:

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Keywords: Cancer, pathogenesis, chromosomal aberration, copy number variation, segmentation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
703 Preliminary Study of the Phonological Development in Three- and Four-Year-Old Bulgarian Children

Authors: Tsvetomira Braynova, Miglena Simonska

Abstract:

The article presents the results of a research of phonological processes in three- and four-year-old children. A test, created for the purpose of the study, was developed and conducted among 120 children. The study included three areas of research - at the level of words (96 words), at the level of sentence repetition (10 sentences) and at the level of generating own speech from a picture (15 pictures). The test also gives us additional information about the articulation errors of the assessed children. The main purpose of the research is to analyze all phonological processes that occur at this age in Bulgarian children and to identify which are typical and atypical for this age. The results show that the most common phonology errors that children make are: sound substitution, elision of sound, metathesis of sound, elision of syllable, elision of consonants clustered in a syllable. Measuring the correlation between average length of repeated speech and average length of generated speech, the analysis does not prove that the more words a child can repeat in part “repeated speech”, the more words they can be expected to generate in part “generating sentence”. The results of this study show that the task of naming a word provides sufficient and representative information to assess the child's phonology.

Keywords: Articulation, phonology, speech, language development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
702 Directional Drilling Optimization by Non-Rotating Stabilizer

Authors: Eisa Noveiri, Adel Taheri Nia

Abstract:

The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.

Keywords: non-rotating, Adjustable stabilizer, simulator, Directional Drilling, optimization, Oil Well Drilling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
701 Users’ Information Disclosure Determinants in Social Networking Sites: A Systematic Literature Review

Authors: Wajdan Al Malwi, Karen Renaud, Lewis Mackenzie

Abstract:

The privacy paradox describes a phenomenon whereby there is no connection between stated privacy concerns and privacy behaviours. We need to understand the underlying reasons for this paradox if we are to help users to preserve their privacy more effectively. In particular, the Social Networking System (SNS) domain offers a rich area of investigation due to the risks of unwise information disclosure decisions. Our study thus aims to untangle the complicated nature and underlying mechanisms of online privacy-related decisions in SNSs. In this paper, we report on the findings of a Systematic Literature Review (SLR) that revealed a number of factors that are likely to influence online privacy decisions. Our deductive analysis approach was informed by Communicative Privacy Management (CPM) theory. We uncovered a lack of clarity around privacy attitudes and their link to behaviours, which makes it challenging to design privacy-protecting SNS platforms and to craft legislation to ensure that users’ privacy is preserved.

Keywords: Privacy paradox, self-disclosure, privacy attitude, privacy behaviour, social networking sites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
700 Fuzzy Ideology based Long Term Load Forecasting

Authors: Jagadish H. Pujar

Abstract:

Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).

Keywords: Fuzzy Logic Control (FLC), Data DependantFactors(DDF), Model Dependent Factors(MDF), StatisticalError(SE), Short Term Load Forecasting (STLF), MiscellaneousError(ME).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
699 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR

Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li

Abstract:

Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.

Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
698 Sustainability Assessment of a Deconstructed Residential House

Authors: Atiq U. Zaman, Juliet Arnott

Abstract:

This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.

Keywords: Circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
697 Blockchain in Saudi e-Government: A Systematic Literature Review

Authors: Haitham Assiri, Majed Eljazzar, Priyadarsi Nanda

Abstract:

The world is gradually entering the fourth industrial revolution. E-Government services are scaling government operations across the globe. However, as promising as an e-Government system would be, it is also susceptible to malicious attacks if not properly secured. In our study, we found that in Saudi Arabia, the e-Government website, Yesser, is vulnerable to external attacks. Obviously, this can lead to a breach of data integrity and privacy. In this paper, a systematic literature review (SLR) was conducted to explore possible ways the Kingdom of Saudi Arabia can take necessary measures to strengthen its e-Government system using blockchain. Blockchain is one of the emerging technologies shaping the world through its applications in finance, elections, healthcare, etc. It secures systems and brings more transparency. A total of 28 papers were selected for this SLR, and 19 of the papers significantly showed that blockchain could enhance the security and privacy of Saudi’s e-Government system. Other papers also concluded that blockchain is effective, albeit with the integration of other technologies like IoT, AI and big data. These papers have been analyzed to sieve out the findings and set the stage for future research into the subject.

Keywords: blockchain, data integrity, e-Government, security threats

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
696 Reducing Later Life Loneliness: A Systematic Literature Review of Loneliness Interventions

Authors: Dhruv Sharma, Lynne Blair, Stephen Clune

Abstract:

Later life loneliness is a social issue that is increasing alongside an upward global population trend. As a society, one way that we have responded to this social challenge is through developing non-pharmacological interventions such as befriending services, activity clubs, meet-ups, etc. Through a systematic literature review, this paper suggests that currently there is an underrepresentation of radical innovation, and underutilization of digital technologies in developing loneliness interventions for older adults. This paper examines intervention studies that were published in English language, within peer reviewed journals between January 2005 and December 2014 across 4 electronic databases. In addition to academic databases, interventions found in grey literature in the form of websites, blogs, and Twitter were also included in the overall review. This approach yielded 129 interventions that were included in the study. A systematic approach allowed the minimization of any bias dictating the selection of interventions to study. A coding strategy based on a pattern analysis approach was devised to be able to compare and contrast the loneliness interventions. Firstly, interventions were categorized on the basis of their objective to identify whether they were preventative, supportive, or remedial in nature. Secondly, depending on their scope, they were categorized as one-to-one, community-based, or group based. It was also ascertained whether interventions represented an improvement, an incremental innovation, a major advance or a radical departure, in comparison to the most basic form of a loneliness intervention. Finally, interventions were also assessed on the basis of the extent to which they utilized digital technologies. Individual visualizations representing the four levels of coding were created for each intervention, followed by an aggregated visual to facilitate analysis. To keep the inquiry within scope and to present a coherent view of the findings, the analysis was primarily concerned the level of innovation, and the use of digital technologies. This analysis highlights a weak but positive correlation between the level of innovation and the use of digital technologies in designing and deploying loneliness interventions, and also emphasizes how certain existing interventions could be tweaked to enable their migration from representing incremental innovation to radical innovation for example. This analysis also points out the value of including grey literature, especially from Twitter, in systematic literature reviews to get a contemporary view of latest work in the area under investigation.

Keywords: Loneliness, ageing, innovation, digital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
695 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space

Authors: Nanjiang Chen

Abstract:

In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experience of space. Addressing these gaps, this paper presents a continuous visibility algorithm, providing a potentially valuable approach to measuring urban spaces from a human - centric perspective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this technique allows for a continuous range of visibility assessment, closely mirroring human visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Beijing's urban setting. Its key distinction lies in its potential to benefit a broad spectrum of stakeholders, ranging from urban developers to public policymakers, aiding in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.

Keywords: Visual openness, spatial continuity, ray-tracing algorithms, urban computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29
694 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: Air pollution, dispersion, emissions, line sources, road traffic, urban transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
693 Calculation of Density for Refrigerant Mixtures in Sub Critical Regions for Use in the Buildings

Authors: Mohammad Reza Mobinipouya, Zahra Barzegar

Abstract:

Accurate and comprehensive thermodynamic properties of pure and mixture of refrigerants are in demand by both producers and users of these materials. Information about thermodynamic properties is important initially to qualify potential candidates for working fluids in refrigeration machinery. From practical point of view, Refrigerants and refrigerant mixtures are widely used as working fluids in many industrial applications, such as refrigerators, heat pumps, and power plants The present work is devoted to evaluating seven cubic equations of state (EOS) in predicting gas and liquid phase volumetric properties of nine ozone-safe refrigerants both in super and sub-critical regions. The evaluations, in sub-critical region, show that TWU and PR EOS are capable of predicting PVT properties of refrigerants R32 within 2%, R22, R134a, R152a and R143a within 1% and R123, R124, R125, TWU and PR EOS's, from literature data are 0.5% for R22, R32, R152a, R143a, and R125, 1% for R123, R134a, and R141b, and 2% for R124. Moreover, SRK EOS predicts PVT properties of R22, R125, and R123 to within aforementioned errors. The remaining EOS's predicts volumetric properties of this class of fluids with higher errors than those above mentioned which are at most 8%.In general, the results are in favor of the preference of TWU and PR EOS over other remaining EOS's in predicting densities of all mentioned refrigerants in both super and sub critical regions. Typically, this refrigerant is known to offer advantages such as ozone depleting potential equal to zero, Global warming potential equal to 140, and no toxic.

Keywords: Refrigerant, cooling systems, Sub-CriticalRegions, volumetric properties, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
692 Fabrication and Characterization of CdS Nanoparticles Annealed by using Different Radiations

Authors: Aneeqa Sabah, Saadat Anwar Siddiqi, Salamat Ali

Abstract:

The systematic manipulations of shapes and sizes of inorganic compounds greatly benefit the various application fields including optics, magnetic, electronics, catalysis and medicine. However shape control has been much more difficult to achieve. Hence exploration of novel method for the preparation of differently shaped nanoparticles is challenging research area. II-VI group of semiconductor cadmium sulphide (CdS) nanostructure with different morphologies (such as, acicular like, mesoporous, spherical shapes) and of crystallite sizes vary from 11 to 16 nm were successfully synthesized by chemical aqueous precipitation of Cd2+ ions with homogeneously released S2- ions from decomposition of cadmium sulphate (CdSO4) and thioacetamide (CH3CSNH2) by annealing at different radiations (microwave, ultrasonic and sunlight) with matter and systematic research has been done for various factors affecting the controlled growth rate of CdS nanoparticles. The obtained nanomaterials have been characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravometric (DSC-TGA) analysis and Scanning Electron Microscopy (SEM). The result indicates that on increasing the reaction time particle size increases but on increasing the molar ratios grain size decreases.

Keywords: CdS nanoparticles, Morphology, Oxidation, Radiations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984
691 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network

Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo

Abstract:

By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.

Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
690 Automatic 2D/2D Registration using Multiresolution Pyramid based Mutual Information in Image Guided Radiation Therapy

Authors: Jing Jia, Shanqing Huang, Fang Liu, Qiang Ren, Gui Li, Mengyun Cheng, Chufeng Jin, Yican Wu

Abstract:

Medical image registration is the key technology in image guided radiation therapy (IGRT) systems. On the basis of the previous work on our IGRT prototype with a biorthogonal x-ray imaging system, we described a method focused on the 2D/2D rigid-body registration using multiresolution pyramid based mutual information in this paper. Three key steps were involved in the method : firstly, four 2D images were obtained including two x-ray projection images and two digital reconstructed radiographies(DRRs ) as the input for the registration ; Secondly, each pair of the corresponding x-ray image and DRR image were matched using multiresolution pyramid based mutual information under the ITK registration framework ; Thirdly, we got the final couch offset through a coordinate transformation by calculating the translations acquired from the two pairs of the images. A simulation example of a parotid gland tumor case and a clinical example of an anthropomorphic head phantom were employed in the verification tests. In addition, the influence of different CT slice thickness were tested. The simulation results showed that the positioning errors were 0.068±0.070, 0.072±0.098, 0.154±0.176mm along three axes which were lateral, longitudinal and vertical. The clinical test indicated that the positioning errors of the planned isocenter were 0.066, 0.07, 2.06mm on average with a CT slice thickness of 2.5mm. It can be concluded that our method with its verified accuracy and robustness can be effectively used in IGRT systems for patient setup.

Keywords: 2D/2D registration, image guided radiation therapy, multi resolution pyramid, mutual information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
689 Precise Measurement of Displacement using Pixels

Authors: Razif Mahadi, John Billingsley

Abstract:

Manufacturing processes demand tight dimensional tolerances. The paper concerns a transducer for precise measurement of displacement, based on a camera containing a linescan chip. When tests were conducted using a track of black and white stripes with a 2mm pitch, errors in measuring on individual cycle amounted to 1.75%, suggesting that a precision of 35 microns is achievable.

Keywords: Linescan, microcontroller, pixels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
688 Maternal Smoking and Risk of Childhood Overweight and Obesity: A Meta-Analysis

Authors: Martina Kanciruk, Jac W. Andrews, Tyrone Donnon

Abstract:

The purpose of this study was to determine the significance of maternal smoking for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, smoking, parents, childhood, risk factors. Eighteen studies of maternal smoking during pregnancy and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that maternal smoking during pregnancy is a significant risk factor for overweight and obesity; mothers who smoke during pregnancy are at a greater risk for developing obesity or overweight; the quantity of cigarettes consumed by the mother during pregnancy influenced the odds of offspring overweight and/or obesity. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.

Keywords: Childhood obesity, overweight, smoking, parents, risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
687 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry

Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine

Abstract:

The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).

Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
686 Ghost Frequency Noise Reduction through Displacement Deviation Analysis

Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran

Abstract:

Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.

Keywords: Displacement deviation analysis, gear whine, ghost frequency, sound quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
685 Family History of Obesity and Risk of Childhood Overweight and Obesity: A Meta-Analysis

Authors: Martina Kanciruk, Jac W. Andrews, Tyrone Donnon

Abstract:

The purpose of this study was to determine the significance of history of obesity for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, family history, parents, childhood, risk factors. Eleven studies of family history and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that family history of obesity is a significant risk factor of overweight and /or obesity in offspring; risk for offspring overweight and/or obesity associated with family history varies depending of the family members included in the analysis; and when family history of obesity is present, the offspring are at greater risk for developing obesity or overweight. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.

Keywords: Childhood obesity, overweight, family history, risk factors, meta-analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3565
684 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

Authors: M. A. Okezue, K. L. Clase, S. R. Byrn

Abstract:

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Keywords: Data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
683 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
682 STLF Based on Optimized Neural Network Using PSO

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
681 User’s Susceptibility Factors to Malware Attacks: A Systemic Literature Review

Authors: Awad A. Younis, Elise Stronberg, Shifa Noor

Abstract:

Users’ susceptibility to malware attacks have been noticed in the past few years. Investigating the factors that make a user vulnerable to those attacks is critical because they can be utilized to set up proactive strategies such as awareness and education to mitigate the impacts of those attacks. Demographic, behavioral, and cultural vulnerabilities are the main factors that make users susceptible to malware attacks. It is challenging, however, to draw more general conclusions based on those factors due to the varieties in the type of users and different types of malware. Therefore, we conducted a systematic literature review (SLR) of the existing research for user susceptibility factors to malware attacks. The results showed that all demographic factors are consistently associated with malware infection regardless of the users' type except for age and gender. Besides, the association of culture and personality factors with malware infection is consistent in most of the selected studies and for all types of users. Moreover, malware infection varies based on age, geographic location, and host types. We propose that future studies should carefully take into consideration the type of users because different users may be exposed to different threats or targeted based on their user domains’ characteristics. Additionally, as different types of malware use different tactics to trick users, taking the malware types into consideration is important.

Keywords: cybersecurity, malware, users, demographics, personality, culture, systematic literature review

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638