Search results for: system of equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9306

Search results for: system of equations

9186 An Implementation of MacMahon's Partition Analysis in Ordering the Lower Bound of Processing Elements for the Algorithm of LU Decomposition

Authors: Halil Snopce, Ilir Spahiu, Lavdrim Elmazi

Abstract:

A lot of Scientific and Engineering problems require the solution of large systems of linear equations of the form bAx in an effective manner. LU-Decomposition offers good choices for solving this problem. Our approach is to find the lower bound of processing elements needed for this purpose. Here is used the so called Omega calculus, as a computational method for solving problems via their corresponding Diophantine relation. From the corresponding algorithm is formed a system of linear diophantine equalities using the domain of computation which is given by the set of lattice points inside the polyhedron. Then is run the Mathematica program DiophantineGF.m. This program calculates the generating function from which is possible to find the number of solutions to the system of Diophantine equalities, which in fact gives the lower bound for the number of processors needed for the corresponding algorithm. There is given a mathematical explanation of the problem as well. Keywordsgenerating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equationsand : calculus.

Keywords: generating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equations and calculus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
9185 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
9184 Confidence Intervals for Double Exponential Distribution: A Simulation Approach

Authors: M. Alrasheedi

Abstract:

The double exponential model (DEM), or Laplace distribution, is used in various disciplines. However, there are issues related to the construction of confidence intervals (CI), when using the distribution.In this paper, the properties of DEM are considered with intention of constructing CI based on simulated data. The analysis of pivotal equations for the models here in comparisons with pivotal equations for normal distribution are performed, and the results obtained from simulation data are presented.

Keywords: Confidence intervals, double exponential model, pivotal equations, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551
9183 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly & Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly & Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicate the improvement in the performance of SVM (Poly & Rbf) in comparison to dimensional form of scour.

Keywords: Modeling, pier scour, regression, prediction, SVM (Poly & Rbf kernels).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
9182 Modeling the Impact of Controls on Information System Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Information system risk management helps to reduce or eliminate risk by implementing appropriate controls. In this paper, we propose a quantification model of controls impact on information system risks by automatizing the residual criticality estimation step of FMECA which is based on a inductive reasoning. For this, we defined three equations based on type and maturity of controls. For testing, the values obtained with the model were compared to estimated values given by interlocutors during different working sessions and the result is satisfactory. This model allows an optimal assessment of controls maturity and facilitates risk analysis of information system.

Keywords: Information System, Risk, Control, FMECA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
9181 Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach

Authors: Adam L. Yanagihara, Yong Seok Park

Abstract:

The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility.

Keywords: Eddy current brake, engineering design, human factors engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
9180 High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method

Authors: Pan Cheng, Jin Huang, Guang Zeng

Abstract:

Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.

Keywords: boundary integral equation, extrapolation algorithm, aposteriori error estimate, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3644
9179 Dynamic Shock Bank Liquidity Analysis

Authors: C. Recommandé, J.C. Blind, A. Clavel, R. Gourichon, V. Le Gal

Abstract:

Simulations are developed in this paper with usual DSGE model equations. The model is based on simplified version of Smets-Wouters equations in use at European Central Bank which implies 10 macro-economic variables: consumption, investment, wages, inflation, capital stock, interest rates, production, capital accumulation, labour and credit rate, and allows take into consideration the banking system. Throughout the simulations, this model will be used to evaluate the impact of rate shocks recounting the actions of the European Central Bank during 2008.

Keywords: CC-LM, Central Bank, DSGE, Liquidity Shock, Non-standard Intervention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
9178 Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant

Authors: G. Zahedi, H. Yaghoobi

Abstract:

Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.

Keywords: Dehydrogenation, fixed bed reactor, modeling, linear alkyl benzene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
9177 Research of a Multistep Method Applied to Numerical Solution of Volterra Integro-Differential Equation

Authors: M.Imanova, G.Mehdiyeva, V.Ibrahimov

Abstract:

Solution of some practical problems is reduced to the solution of the integro-differential equations. But for the numerical solution of such equations basically quadrature methods or its combination with multistep or one-step methods are used. The quadrature methods basically is applied to calculation of the integral participating in right hand side of integro-differential equations. As this integral is of Volterra type, it is obvious that at replacement with its integrated sum the upper limit of the sum depends on a current point in which values of the integral are defined. Thus we receive the integrated sum with variable boundary, to work with is hardly. Therefore multistep method with the constant coefficients, which is free from noted lack and gives the way for finding it-s coefficients is present.

Keywords: Volterra integro-differential equations, multistepmethods, finite-difference methods, initial value problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
9176 Model Inversion of a Two Degrees of Freedom Linearized PUMA from Bicausal Bond Graphs

Authors: Gilberto Gonzalez-A, Ignacio Rodríguez- A., Dunia Nuñez-P

Abstract:

A bond graph model of a two degrees of freedom PUMA is described. System inversion gives the system input required to generate a given system output. In order to get the system inversion of the PUMA manipulator, a linearization of the nonlinear bond graph is obtained. Hence, the bicausality of the linearized bond graph of the PUMA manipulator is applied. Thus, the bicausal bond graph provides a systematic way of generating the equations of the system inversion. Simulation results to verify the calculated input for a given output are shown.

Keywords: Bond graph, system inversion, bicausality, PUMA manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
9175 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
9174 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis

Authors: Alireza Abbasi Moshaii, Mehdi Tale Masouleh, Esmail Zarezadeh, Kamran Farajzadeh

Abstract:

The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3- RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. A mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, the CAD model of these robots has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.

Keywords: Robotic, Static analysis, 3-RCC, 3-RRS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
9173 Parallel Block Backward Differentiation Formulas For Solving Large Systems of Ordinary Differential Equations

Authors: Zarina Bibi, I., Khairil Iskandar, O.

Abstract:

In this paper, parallelism in the solution of Ordinary Differential Equations (ODEs) to increase the computational speed is studied. The focus is the development of parallel algorithm of the two point Block Backward Differentiation Formulas (PBBDF) that can take advantage of the parallel architecture in computer technology. Parallelism is obtained by using Message Passing Interface (MPI). Numerical results are given to validate the efficiency of the PBBDF implementation as compared to the sequential implementation.

Keywords: Ordinary differential equations, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
9172 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations

Authors: Javad Abdalkhani

Abstract:

Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..

Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
9171 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: Integral images, differential images, differential filters, image fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
9170 New Newton's Method with Third-order Convergence for Solving Nonlinear Equations

Authors: Osama Yusuf Ababneh

Abstract:

For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.

Keywords: Third-order convergence, non-linear equations, root finding, iterative method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
9169 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
9168 Action Functional of the Electomagnetic Field: Effect of Gravitation

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

The scalar wave equation for a potential in a curved space time, i.e., the Laplace-Beltrami equation has been studied in this work. An action principle is used to derive a finite element algorithm for determining the modes of propagation inside a waveguide of arbitrary shape. Generalizing this idea, the Maxwell theory in a curved space time determines a set of linear partial differential equations for the four electromagnetic potentials given by the metric of space-time. Similar to the Einstein-s formulation of the field equations of gravitation, these equations are also derived from an action principle. In this paper, the expressions for the action functional of the electromagnetic field have been derived in the presence of gravitational field.

Keywords: General theory of relativity, electromagnetism, metric tensor, Maxwells equations, test functions, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
9167 Power Flow Control with UPFC in Power Transmission System

Authors: Samina Elyas Mubeen, R. K. Nema, Gayatri Agnihotri

Abstract:

In this paper the performance of unified power flow controller is investigated in controlling the flow of po wer over the transmission line. Voltage sources model is utilized to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile. This model is incorporated in Newton Raphson algorithm for load flow studies. Simultaneous method is employed in which equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations. It is solved according to the Newton raphson algorithm. Case studies are carried on standard 5 bus network. Simulation is done in Matlab. The result of network with and without using UPFC are compared in terms of active and reactive power flows in the line and active and reactive power flows at the bus to analyze the performance of UPFC.

Keywords: Newton-Raphson algorithm, Load flow, Unified power flow controller, Voltage source model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4289
9166 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
9165 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall

Authors: M. Faraji, F. Berroug

Abstract:

A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.

Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
9164 Exponential Stability of Numerical Solutions to Stochastic Age-Dependent Population Equations with Poisson Jumps

Authors: Mao Wei

Abstract:

The main aim of this paper is to investigate the exponential stability of the Euler method for a stochastic age-dependent population equations with Poisson random measures. It is proved that the Euler scheme is exponentially stable in mean square sense. An example is given for illustration.

Keywords: Stochastic age-dependent population equations, poisson random measures, numerical solutions, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
9163 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.

Keywords: Stewart platform, docking operation, spacecraft, spring constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
9162 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method

Authors: N. Fusun Oyman Serteller

Abstract:

In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.  Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.

Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
9161 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis

Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches

Abstract:

In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
9160 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
9159 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long

Abstract:

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
9158 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: R. B. Ogunrinde

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: Differential equations, Numerical, Initial value problem, Polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
9157 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method

Authors: N. Outili, A-H. Meniai

Abstract:

Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.

Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688