Search results for: stability analysis
9414 The Influence of Internal and External Damping on Turbocharger Stability
Authors: Zdeňka Rendlová
Abstract:
This paper presents the mathematical description of the high-speed rotating system taking into account the influence of internal and external damping. The mathematical model is obtained by using the finite element method. The analyzed system is an automotive turbocharger understood as a rotor-bearing system. The circular cross-section shaft is equipped with one compressor wheel, one turbine wheel and is supported by two floating ring bearings. Based on the model, the dynamical analysis of a turbocharger is performed and stability conditions are evaluated.
Keywords: External damping, internal damping, journal bearing, stability, turbocharger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25359413 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays
Authors: Mengzhuo Luo, Shouming Zhong
Abstract:
This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.
Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19289412 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays
Abstract:
In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.
Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15139411 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses
Authors: Xiaomei Wang, Shouming Zhong
Abstract:
In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.
Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14859410 Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays
Authors: J.H. Park, S. Lakshmanan, H.Y. Jung, S.M. Lee
Abstract:
This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.Keywords: BAM neural networks, Probabilistic time-varying delays, Stability criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14199409 A Model to Determine Atmospheric Stability and its Correlation with CO Concentration
Authors: Kh. Ashrafi, Gh. A. Hoshyaripour
Abstract:
Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.Keywords: Atmospheric stability, Pasquill-Turner classification, convective turbulence, mechanical turbulence, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64559408 Investigation of Slope Stability in Gravel Soils in Unsaturated State
Authors: Seyyed Abolhasan Naeini, Ehsan Azini
Abstract:
In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software. we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground. Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.
Keywords: Slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8319407 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay
Authors: Liqiong Liu, Shouming Zhong
Abstract:
In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.
Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19069406 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control
Authors: B. Dora Arul Selvi, .N. Kamaraj
Abstract:
Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.
Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14929405 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.
Keywords: Elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8229404 Influence of Various Factors on Stability of CoSPc in LPG Sweetening Process
Authors: Ali Samadi Afshar, Hamed Harrafi, S.M.Javad Gharib Zahedi
Abstract:
IFP Group Technology “Sulfrex process" was used in Iran-s South Pars Gas Complex Refineries for removing sulfur compounds such as mercaptans, carbonyl sulfide and hydrogen sulfide, which uses sulfonated cobalt phthalocyanine dispersed in alkaline solution as catalyst. In this technology, catalyst and alkaline solution were used circularly. However the stability of catalyst due to effect of some parameters would reduce with the running of the unit and therefore sweetening efficiency would be decreased. Hence, the aim of this research is study the factors effecting on the stability of catalyst.Keywords: sulfonated cobalt phthalocyanine, mercaptans, stability, catalyst, sulfur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24909403 Stability and Bifurcation Analysis in a Model of Hes1 Selfregulation with Time Delay
Authors: Kejun Zhuang, Hailong Zhu
Abstract:
The dynamics of a delayed mathematical model for Hes1 oscillatory expression are investigated. The linear stability of positive equilibrium and existence of local Hopf bifurcation are studied. Moreover, the global existence of large periodic solutions has been established due to the global bifurcation theorem.Keywords: Hes1, Hopf bifurcation, time delay, transcriptional repression loop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13959402 ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell
Authors: S. Limpattayanate, M. Hunsom
Abstract:
A comparison of activity and stability of the as-formed Pt/C, Pt-Co and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single Proton Exchange Membrane (PEM) fuel cell, the Oxygen Reduction Reaction (ORR) activity of the Pt-M/C electrocatalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C > Pt-Co/C > Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electrochemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt- Pd/C was the most stable than the other three electrocatalysts.Keywords: ORR activity, Stability, Pt-based electrocatalysts, PEM fuel cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24209401 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, a coupled damage effect in the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade are developed. The use of the composite material for the rotor offers a good stability. Numerical calculations on the model developed prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed determining the vibratory responses due to various excitations.
Keywords: Rotor, composite, damage, finite element, numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22509400 Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium
Authors: M. Meenasaranya, S. Saravanan
Abstract:
Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.Keywords: Convection, porous medium, anisotropy, temperature modulation, nonlinear stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8749399 Improved Robust Stability and Stabilization Conditions of Discrete-time Delayed System
Authors: Zixin Liu
Abstract:
The problem of robust stability and robust stabilization for a class of discrete-time uncertain systems with time delay is investigated. Based on Tchebychev inequality, by constructing a new augmented Lyapunov function, some improved sufficient conditions ensuring exponential stability and stabilization are established. These conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Compared with some previous results derived in the literature, the new obtained criteria have less conservatism. Two numerical examples are provided to demonstrate the improvement and effectiveness of the proposed method.
Keywords: Robust stabilization, robust stability, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15329398 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.
Keywords: Stability, Functionally graded beam, First order shear deformation theory, Piezoelectric layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16739397 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10499396 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering
Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli
Abstract:
One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible Gross Vehicle Weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.Keywords: Heavy Vehicle, Road Safety, Vehicle Stability, Lateral Acceleration, Gross Vehicle Weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30949395 FACTS Impact on Grid Stability and Power Markets
Authors: Abdulrahman Alsuhaibani, Martin Macken
Abstract:
FACTS devices have great influence on the grid stability and power markets price. Recently, there is intent to integrate a large scale of renewable energy sources to the power system which in turn pushes the power system to operate closer to the security limits. This paper discusses the power system stability and reliability improvement that could be achieved by using FACTS. There is a comparison between FACTS devices to evaluate their performance for different functions. A case study has also been made about its effect on reducing generation cost and minimizing transmission losses which have good impact on efficient and economic operation of electricity markets.
Keywords: FACTS, grid stability, spot price, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3759394 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.
Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21949393 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14949392 Machining Stability of a Milling Machine with Different Preloaded Spindle
Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen
Abstract:
This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.Keywords: Dynamic compliance, Bearing preload, Machining stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21589391 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification
Authors: Jui P. Hung, Yuan L. Lai, Hui T. You
Abstract:
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26469390 Coordinated Design of PSS and STATCOM for Power System Stability Improvement Using Bacteria Foraging Algorithm
Authors: Kyaw Myo Lin, Wunna Swe, Pyone Lai Swe
Abstract:
This paper presents the coordinated controller design of static synchronous compensator (STATCOM) and power system stabilizers (PSSs) for power system stability improvement. Coordinated design problem of STATCOM-based controller with multiple PSSs is formulated as an optimization problem and optimal controller parameters are obtained using bacteria foraging optimization algorithm. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is improved. The nonlinear simulation results show that coordinated design of STATCOM-based controller and PSSs improve greatly the system damping oscillations and consequently stability improvement.
Keywords: Bacteria Foraging, Coordinated Design, Power System Stability, PSSs, STATCOM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29229389 Radiation Stability of Pigment ZnO Modified by Nanopowder
Authors: Chundong Li, V. V. Neshchimenko, M. M. Mikhailov
Abstract:
The effect of the modification of ZnO powders by ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 nanoparticles with a concentration of 1-30 wt % is investigated by diffuse reflectance spectra within the wavelength range 200 to 2500 nm before and after 100 keV proton and electron irradiation. It has been established that the introduction of nanoparticles ZrO2, Al2O3 enhances the optical stability of the pigments under proton irradiation, but reduces it under electron irradiation. Modifying with TiO2, SiO2, CeO2, Y2O3 nanopowders leads to decrease radiation stability in both types of irradiation. Samples modified by 5 wt. % of ZrO2 nanoparticles have the highest stability of optical properties after proton exposure. The degradation of optical properties under electron irradiation is not high for this concentration of nanoparticles. A decrease in the absorption of pigments modified with nanoparticles proton exposure is determined by a decrease in the intensity of bands located in the UV and visible regions. After electron exposure the absorption bands have in the whole spectrum range.
Keywords: Irradiation, nanopowders, radiation stability, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22129388 Nonlinear Time-History Analysis of 3-Dimensional Semi-rigid Steel Frames
Authors: Phu-Cuong Nguyen, Seung-Eock Kim
Abstract:
This paper presents nonlinear elastic dynamic analysis of 3-D semi-rigid steel frames including geometric and connection nonlinearities. The geometric nonlinearity is considered by using stability functions and updating geometric stiffness matrix. The nonlinear behavior of the steel beam-to-column connection is considered by using a zero-length independent connection element comprising of six translational and rotational springs. The nonlinear dynamic equilibrium equations are solved by the Newmark numerical integration method. The nonlinear time-history analysis results are compared with those of previous studies and commercial SAP2000 software to verify the accuracy and efficiency of the proposed procedure.Keywords: Geometric nonlinearity, nonlinear time-historyanalysis, semi-rigid connection, stability functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39569387 Damping Power System Oscillations Improvement by FACTS Devices: A Comparison between SSSC and STATCOM
Authors: J. Barati, A. Saeedian, S. S. Mortazavi
Abstract:
The main objective of this paper is a comparative investigate in enhancement of damping power system oscillation via coordinated design of the power system stabilizer (PSS) and static synchronous series compensator (SSSC) and static synchronous compensator (STATCOM). The design problem of FACTS-based stabilizers is formulated as a GA based optimization problem. In this paper eigenvalue analysis method is used on small signal stability of single machine infinite bus (SMIB) system installed with SSSC and STATCOM. The generator is equipped with a PSS. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. This aim is to enhance both rotor angle and power system stability. The eigenvalue analysis and non-linear simulation results are presented to show the effects of these FACTS-based stabilizers and reveal that SSSC exhibits the best effectiveness on damping power system oscillation.Keywords: Power system stability, PSS, SSSC, STATCOM, Coordination, Optimization, Damping Oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40149386 Improved Robust Stability Criteria of a Class of Neutral Lur’e Systems with Interval Time-Varying Delays
Authors: Longqiao Zhou, Zixin Liu, Shu Lü
Abstract:
This paper addresses the robust stability problem of a class of delayed neutral Lur’e systems. Combined with the property of convex function and double integral Jensen inequality, a new tripe integral Lyapunov functional is constructed to derive some new stability criteria. Compared with some related results, the new criteria established in this paper are less conservative. Finally, two numerical examples are presented to illustrate the validity of the main results.
Keywords: Lur’e system, Convex function, Jensen integral inequality, Triple-integral method, Exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15179385 Delay-Dependent Stability Criteria for Linear Time-Delay System of Neutral Type
Authors: Myeongjin Park, Ohmin Kwon, Juhyun Park, Sangmoon Lee
Abstract:
This paper proposes improved delay-dependent stability conditions of the linear time-delay systems of neutral type. The proposed methods employ a suitable Lyapunov-Krasovskii’s functional and a new form of the augmented system. New delay-dependent stability criteria for the systems are established in terms of Linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical examples showed that the proposed method is effective and can provide less conservative results.
Keywords: Neutral systems, Time-delay, Stability, Lyapunovmethod, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884