Search results for: mining induced seismic
1334 Seismic Hazard Assessment of Offshore Platforms
Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou
Abstract:
This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.
Keywords: Hazard analysis, offshore platforms, earthquakes, safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10271333 MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management
Authors: M. Awawdeh, A. Fedi
Abstract:
The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.
Keywords: Data Mining, Environmental data, Mathematical Models, Matlab Graphical User Interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47441332 Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem
Authors: First G.M. Karthik, Second Ramachandra.V.Pujeri, Dr.
Abstract:
Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.Keywords: Constraint Based Mining, FP tree, Data mining, GCS problem, CBFP mining technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051331 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22791330 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33111329 Discrimination of Seismic Signals Using Artificial Neural Networks
Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim
Abstract:
The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371328 A Hybrid Data Mining Method for the Medical Classification of Chest Pain
Authors: Sung Ho Ha, Seong Hyeon Joo
Abstract:
Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.Keywords: Data mining, medical decisions, medical domainknowledge, chest pain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22271327 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6591326 Efficient Web Usage Mining Based on K-Medoids Clustering Technique
Authors: P. Sengottuvelan, T. Gopalakrishnan
Abstract:
Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13991325 Comprehensive Analysis of Data Mining Tools
Authors: S. Sarumathi, N. Shanthi
Abstract:
Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.
Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24441324 On the Numerical Approach for Simulating Thermal Hydraulics under Seismic Condition
Authors: Tadashi Watanabe
Abstract:
The two-phase flow field and the motion of the free surface in an oscillating channel are simulated numerically to assess the methodology for simulating nuclear reacotr thermal hydraulics under seismic conditions. Two numerical methods are compared: one is to model the oscillating channel directly using the moving grid of the Arbitrary Lagrangian-Eulerian method, and the other is to simulate the effect of channel motion using the oscillating acceleration acting on the fluid in the stationary channel. The two-phase flow field in the oscillating channel is simulated using the level set method in both cases. The calculated results using the oscillating acceleration are found to coinside with those using the moving grid, and the theoretical back ground and the limitation of oscillating acceleration are discussed. It is shown that the change in the interfacial area between liquid and gas phases under seismic conditions is important for nuclear reactor thermal hydraulics.Keywords: Two-phase flow, simulation, seismic condition, moving grid, oscillating acceleration, interfacial area
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13791323 Protective Effect of Thymoquinone against Arsenic-Induced Testicular Toxicity in Rats
Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat
Abstract:
The protective effect of thymoquinone (TQ) was investigated in rats exposed to testicular injury induced by sodium arsenite (10mg/kg/day, orally, for two days). TQ treatment (10mg/kg/day, intraperitoneal injection) was applied for five days, starting three day before arsenic administration. TQ significantly attenuated the arsenic-induced decreases of serum testosterone, and testicular reduced glutathione level, and significantly decreased the elevations of testicular malondialdehyde and nitric oxide levels resulted from arsenic administration. Also, TQ ameliorated the arsenic-induced testicular tissue injury observed by histopathological examination. In addition, TQ decreased the arsenic-induced expression of inducible nitric oxide synthase and caspase-3 in testicular tissue. It was concluded that TQ may represent a potential candidate to protect against arsenic-induced testicular injury.
Keywords: Thymoquinone, arsenic, testes, rats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28131322 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining
Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri
Abstract:
This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.
Keywords: Motivation behavior, e-learning, moodle log, association rule mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911321 Thin Bed Reservoir Delineation Using Spectral Decomposition and Instantaneous Seismic Attributes, Pohokura Field, Taranaki Basin, New Zealand
Authors: P. Sophon, M. Kruachanta, S. Chaisri, G. Leaungvongpaisan, P. Wongpornchai
Abstract:
The thick bed hydrocarbon reservoirs are primarily interested because of the more prolific production. When the amount of petroleum in the thick bed starts decreasing, the thin bed reservoirs are the alternative targets to maintain the reserves. The conventional interpretation of seismic data cannot delineate the thin bed having thickness less than the vertical seismic resolution. Therefore, spectral decomposition and instantaneous seismic attributes were used to delineate the thin bed in this study. Short Window Discrete Fourier Transform (SWDFT) spectral decomposition and instantaneous frequency attributes were used to reveal the thin bed reservoir, while Continuous Wavelet Transform (CWT) spectral decomposition and envelope (instantaneous amplitude) attributes were used to indicate hydrocarbon bearing zone. The study area is located in the Pohokura Field, Taranaki Basin, New Zealand. The thin bed target is the uppermost part of Mangahewa Formation, the most productive in the gas-condensate production in the Pohokura Field. According to the time-frequency analysis, SWDFT spectral decomposition can reveal the thin bed using a 72 Hz SWDFT isofrequency section and map, and that is confirmed by the instantaneous frequency attribute. The envelope attribute showing the high anomaly indicates the hydrocarbon accumulation area at the thin bed target. Moreover, the CWT spectral decomposition shows the low-frequency shadow zone and abnormal seismic attenuation in the higher isofrequencies below the thin bed confirms that the thin bed can be a prospective hydrocarbon zone.
Keywords: Hydrocarbon indication, instantaneous seismic attribute, spectral decomposition, thin bed delineation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6451320 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28551319 Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method
Authors: Murad A, Baker H, Mahmoud S, Gabr A
Abstract:
The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.Keywords: groundwater, shallow seismic method, United Arab Emirates
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971318 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece
Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos
Abstract:
The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.
Keywords: Greece, heavy metals, mining, pollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5871317 Seismic Resistant Mechanism of Two-by-four Wooden Frame with Vibration Control Device
Authors: Takumi Ito, Kurumi Kurokawa, Dong Hang Wu, Takashi Nagumo, Haruhiko Hirata
Abstract:
The structural system of wooden house by two-by-four method is widely adopted in any countries, and a various type of vibration control system for building structures has been developed on country with frequent earthquake. In this study, a vibration control device called “Scaling Frame” (SF) is suggested, and which is applied to wooden two-by-four method structures. This paper performs the experimental study to investigate the restoring force characteristics of two-by-four with SF device installed. The seismic resistant performance is estimated experimentally, and also the applicability and effectiveness are discussing.Keywords: Two-by-four method, seismic vibration control, horizontally loading test, restoring force characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10801316 Distributed Data-Mining by Probability-Based Patterns
Authors: M. Kargar, F. Gharbalchi
Abstract:
In this paper a new method is suggested for distributed data-mining by the probability patterns. These patterns use decision trees and decision graphs. The patterns are cared to be valid, novel, useful, and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. By using the suggested method we will be able to extract the useful information from massive and multi-relational data bases.Keywords: Data-mining, Decision tree, Decision graph, Pattern, Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591315 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis
Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh
Abstract:
The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.
Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42601314 Quantification of GHGs Emissions from Electricity and Diesel Fuel Consumption in Basalt Mining Industry in Thailand
Authors: S. Kittipongvises, A. Dubsok
Abstract:
The mineral and mining industry is necessary for countries to have an adequate and reliable supply of materials to meet their socio-economic development. Despite its importance, the environmental impacts from mineral exploration are hugely significant. This study aimed to investigate and quantify the amount of GHGs emissions emitted from both electricity and diesel vehicle fuel consumption in basalt mining in Thailand. Plant A, located in the northeastern region of Thailand, was selected as a case study. Results indicated that total GHGs emissions from basalt mining and operation (Plant A) were approximately 2,501,086 kgCO2e and 1,997,412 kgCO2e in 2014 and 2015, respectively. The estimated carbon intensity ranged between 1.824 kgCO2e to 2.284 kgCO2e per ton of rock product. Scope 1 (direct emissions) was the dominant driver of its total GHGs compared to scope 2 (indirect emissions). As such, transport related combustion of diesel fuels generated the highest GHGs emission (65%) compared to emissions from purchased electricity (35%). Some of the potential implications for mining entities were also presented.
Keywords: Basalt mining, diesel fuel, electricity, GHGs emissions, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581313 Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values
Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou
Abstract:
A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are non structure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.
Keywords: Damage measures, Bidirectional excitation, Spectral based IMs, R/C buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23821312 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs
Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas
Abstract:
In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).
Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31261311 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11951310 Signed Approach for Mining Web Content Outliers
Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi, G.V.Uma
Abstract:
The emergence of the Internet has brewed the revolution of information storage and retrieval. As most of the data in the web is unstructured, and contains a mix of text, video, audio etc, there is a need to mine information to cater to the specific needs of the users without loss of important hidden information. Thus developing user friendly and automated tools for providing relevant information quickly becomes a major challenge in web mining research. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent ones that are likely to contain outlying data such as noise, irrelevant and redundant data. This paper mainly focuses on Signed approach and full word matching on the organized domain dictionary for mining web content outliers. This Signed approach gives the relevant web documents as well as outlying web documents. As the dictionary is organized based on the number of characters in a word, searching and retrieval of documents takes less time and less space.Keywords: Outliers, Relevant document, , Signed Approach, Web content mining, Web documents..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23501309 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30271308 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment
Authors: S. Jarernprasert, E. Bazan-Zurita, P. C. Rizzo
Abstract:
Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.
Keywords: Seismic, Directionality, In-Structure Response Spectra, Probabilistic Risk Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25351307 Mining Frequent Patterns with Functional Programming
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.Keywords: Association, frequent pattern mining, functionalprogramming, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21381306 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.
Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21881305 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation
Authors: Chong Zhang, Mu-Xuan Tao
Abstract:
In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.
Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624