Search results for: Genetic based power systemstabilizer
13354 Design of Gravity Dam by Genetic Algorithms
Authors: Farzin Salmasi
Abstract:
The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433313353 All Optical Wavelength Conversion Based On Four Wave Mixing in Optical Fiber
Authors: Surinder Singh, Gursewak Singh Lovkesh
Abstract:
We have designed wavelength conversion based on four wave mixing in an optical fiber at 10 Gb/s. The power of converted signal increases with increase in signal power. The converted signal power is investigated as a function of input signal power and pump power. On comparison of converted signal power at different value of input signal power, we observe that best converted signal power is obtained at -2 dBm input signal power for both up conversion as well as for down conversion. Further, FWM efficiency, quality factor is observed for increase in input signal power and optical fiber length.Keywords: FWM, Optical fiber, Quality, Wavelength Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224213352 Intuition Operator: Providing Genomes with Reason
Authors: Grigorios N. Beligiannis, Georgios A. Tsirogiannis, Panayotis E. Pintelas
Abstract:
In this contribution, the use of a new genetic operator is proposed. The main advantage of using this operator is that it is able to assist the evolution procedure to converge faster towards the optimal solution of a problem. This new genetic operator is called ''intuition'' operator. Generally speaking, one can claim that this operator is a way to include any heuristic or any other local knowledge, concerning the problem, that cannot be embedded in the fitness function. Simulation results show that the use of this operator increases significantly the performance of the classic Genetic Algorithm by increasing the convergence speed of its population.
Keywords: Genetic algorithms, intuition operator, reasonable genomes, complex search space, nonlinear fitness functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157613351 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.
Keywords: Process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158813350 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes
Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229113349 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems
Authors: I. Abuiziah, N. Shakarneh
Abstract:
Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.
Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510013348 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power
Authors: T. Mohammed Chikouche, K. Hartani
Abstract:
In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.
Keywords: Power quality, direct power control, power ripple, switching table, unity power factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115813347 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.
Keywords: Power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77013346 Agro-Morphological Characterization of Vicia faba L. Accessions in the Kingdom of Saudi Arabia
Authors: Zia Amjad, Salem S. Alghamdi
Abstract:
The study was conducted at the student educational farm at the College of Food and Agriculture in the Kingdom of Saudi Arabia. The aim of study was to characterize 154 Vicia faba L. accessions using agro-morphological traits based on The International Union for the Protection of New Varieties of Plants (UPOV) and The International Board for Plant Genetic Resources (IBPGR) descriptors. This research is significant as it contributes to the understanding of the genetic diversity and potential yield of V. faba in Saudi Arabia. In the study, 24 agro-morphological characters including 11 quantitative and 13 qualitative were observed for genetic variation. All the results were analyzed using multivariate analysis i.e., principal component analysis (PCA). First, six principal components (PC) had eigenvalues greater than one; accounted for 72% of available V. faba genetic diversity. However, first three components revealed more than 10% of genetic diversity each i.e., 22.36%, 15.86% and 10.89% respectively. PCA distributed the V. faba accessions into different groups based on their performance for the characters under observation. PC-1, which represented 22.36% of the genetic diversity, was positively associated with stipule spot pigmentation, intensity of streaks, pod degree of curvature and to some extent with 100 seed weight. PC-2 covered 15.86 of the genetic diversity and showed positive association for average seed weight per plant, pod length, number of seeds per plant, 100 seed weight, stipule spot pigmentation, intensity of streaks (same as in PC-1) and to some extent for pod degree of curvature and number of pods per plant. PC-3 revealed 10.89% of genetic diversity and expressed positive association for number of pods per plant and number of leaflets per plant. This study contributes to the understanding of the genetic diversity and potential yield of V. faba in the Kingdom of Saudi Arabia. By establishing a core collection of V. faba, the research provides a valuable resource for future conservation and utilization of this crop worldwide.
Keywords: Agro-morphological characterization, genetic diversity, core collection, PCA, Vicia faba L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20213345 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236813344 Adaptive Distributed Genetic Algorithms and Its VLSI Design
Authors: Kazutaka Kobayashi, Norihiko Yoshida, Shuji Narazaki
Abstract:
This paper presents a dynamic adaptation scheme for the frequency of inter-deme migration in distributed genetic algorithms (GA), and its VLSI hardware design. Distributed GA, or multi-deme-based GA, uses multiple populations which evolve concurrently. The purpose of dynamic adaptation is to improve convergence performance so as to obtain better solutions. Through simulation experiments, we proved that our scheme achieves better performance than fixed frequency migration schemes.Keywords: Genetic algorithms, dynamic adaptation, VLSI hardware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166913343 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190713342 Machine Learning in Production Systems Design Using Genetic Algorithms
Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162913341 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm
Authors: Ali Nourollah, Mohsen Movahedinejad
Abstract:
In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.
Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329013340 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.
Keywords: Deep learning, genetic algorithm, object recognition, robot grasping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213413339 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm
Authors: Omid S. Fard, Akbar H. Borzabadi
Abstract:
In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129313338 Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach
Authors: Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAsghari
Abstract:
This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.Keywords: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287413337 Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm
Authors: Ganesh. Vulasala, Sivanagaraju. Sirigiri, Ramana. Thiruveedula
Abstract:
This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.Keywords: Distribution system, Load flows, Reconfiguration, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325013336 Solving Bus Terminal Location Problem Using Genetic Algorithm
Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil
Abstract:
Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230513335 Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method
Authors: Mohd Herwan Sulaiman, Omar Aliman, Siti Rafidah Abdul Rahim
Abstract:
This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.Keywords: Embedded generation (EG), load flow study, optimal allocation, real coded genetic algorithm (RCGA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190313334 Solution of Optimal Reactive Power Flow using Biogeography-Based Optimization
Authors: Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay
Abstract:
Optimal reactive power flow is an optimization problem with one or more objective of minimizing the active power losses for fixed generation schedule. The control variables are generator bus voltages, transformer tap settings and reactive power output of the compensating devices placed on different bus bars. Biogeography- Based Optimization (BBO) technique has been applied to solve different kinds of optimal reactive power flow problems subject to operational constraints like power balance constraint, line flow and bus voltages limits etc. BBO searches for the global optimum mainly through two steps: Migration and Mutation. In the present work, BBO has been applied to solve the optimal reactive power flow problems on IEEE 30-bus and standard IEEE 57-bus power systems for minimization of active power loss. The superiority of the proposed method has been demonstrated. Considering the quality of the solution obtained, the proposed method seems to be a promising one for solving these problems.Keywords: Active Power Loss, Biogeography-Based Optimization, Migration, Mutation, Optimal Reactive Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427713333 Speed Regulation of a Small BLDC Motor Using Genetic-Based Proportional Control
Authors: S. Poonsawat, T. Kulworawanichpong
Abstract:
This paper presents the speed regulation scheme of a small brushless dc motor (BLDC motor) with trapezoidal back-emf consideration. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. As a result, the proportional control can perform well in order to compensate the BLDC motor with load disturbance. This confirms that the proposed speed regulation scheme gives satisfactory results.
Keywords: BLDC motor, proportional controller, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209613332 An Enhanced Cryptanalytic Attack on Knapsack Cipher using Genetic Algorithm
Authors: Poonam Garg, Aditya Shastri, D.C. Agarwal
Abstract:
With the exponential growth of networked system and application such as eCommerce, the demand for effective internet security is increasing. Cryptology is the science and study of systems for secret communication. It consists of two complementary fields of study: cryptography and cryptanalysis. The application of genetic algorithms in the cryptanalysis of knapsack ciphers is suggested by Spillman [7]. In order to improve the efficiency of genetic algorithm attack on knapsack cipher, the previously published attack was enhanced and re-implemented with variation of initial assumptions and results are compared with Spillman results. The experimental result of research indicates that the efficiency of genetic algorithm attack on knapsack cipher can be improved with variation of initial assumption.Keywords: Genetic Algorithm, Knapsack cipher, Key search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169713331 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets
Authors: R. K. Agrawal, Rajni Bala
Abstract:
Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.
Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205813330 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)
Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali
Abstract:
The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.
Keywords: Genetic algorithms, traveling salesman problem solving, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255913329 Economical Operation of Hydro-Thermal Power System based on Multi-path Adaptive Tabu Search
Authors: J. Kluabwang
Abstract:
An economic operation scheduling problem of a hydro-thermal power generation system has been properly solved by the proposed multipath adaptive tabu search algorithm (MATS). Four reservoirs with their own hydro plants and another one thermal plant are integrated to be a studied system used to formulate the objective function under complicated constraints, eg water managements, power balance and thermal generator limits. MATS with four subsearch units (ATSs) and two stages of discarding mechanism (DM), has been setting and trying to solve the problem through 25 trials under function evaluation criterion. It is shown that MATS can provide superior results with respect to single ATS and other previous methods, genetic algorithms (GA) and differential evolution (DE).Keywords: Hydro-thermal scheduling problem, economic dispatch, adaptive tabu search, multipath adaptive tabu search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169413328 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach
Authors: A. Pajaziti, H. Cana
Abstract:
In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.
Keywords: Robotic Arm, Neural Network, Genetic Algorithm, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359513327 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology
Authors: Ines Hamdi, Mohamed Ben Ahmed
Abstract:
The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower
Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148513326 Coefficient of Parentage for Crop Hybridization
Authors: Manpreet Singh, Parvinder Singh Sandhu, Basant Raj Singh
Abstract:
Hybridization refers to the crossing breeding of two plants. Coefficient of Parentage (COP) is used by the plant breeders to determine the genetic diversity across various varieties so as to incorporate the useful characters of the two varieties to develop a new crop variety with particular useful characters. Genetic Diversity is the prerequisite for any cultivar development program. Genetic Diversity depends upon the pedigree information of the varieties based on particular levels. Pedigree refers to the parents of a particular variety at various levels. This paper discusses the searching and analyses of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the coefficient of parentage (COP) between the selected wheat varieties. Dummy values were used wherever actual data was not available.Keywords: Coefficient of Parentage, Morphological characters, Pedigree, Genetic Diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195613325 Determination of Sequential Best Replies in N-player Games by Genetic Algorithms
Authors: Mattheos K. Protopapas, Elias B. Kosmatopoulos
Abstract:
An iterative algorithm is proposed and tested in Cournot Game models, which is based on the convergence of sequential best responses and the utilization of a genetic algorithm for determining each player-s best response to a given strategy profile of its opponents. An extra outer loop is used, to address the problem of finite accuracy, which is inherent in genetic algorithms, since the set of feasible values in such an algorithm is finite. The algorithm is tested in five Cournot models, three of which have convergent best replies sequence, one with divergent sequential best replies and one with “local NE traps"[14], where classical local search algorithms fail to identify the Nash Equilibrium. After a series of simulations, we conclude that the algorithm proposed converges to the Nash Equilibrium, with any level of accuracy needed, in all but the case where the sequential best replies process diverges.
Keywords: Best response, Cournot oligopoly, genetic algorithms, Nash equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443